2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
id: 5900f3fa1000cf542c50ff0c
|
2020-12-16 00:37:30 -07:00
|
|
|
|
title: 问题140:改进的斐波那契金块
|
2018-10-10 18:03:03 -04:00
|
|
|
|
challengeType: 5
|
|
|
|
|
videoUrl: ''
|
2021-01-13 03:31:00 +01:00
|
|
|
|
dashedName: problem-140-modified-fibonacci-golden-nuggets
|
2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --description--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
考虑无穷多项式系列AG(x)= xG1 + x2G2 + x3G3 + ...,其中Gk是二阶递归关系的第k项,Gk = Gk-1 + Gk-2,G1 = 1,G2 = 4;也就是说,1,4,5,9,14,23 ......对于这个问题,我们将关注x的值,其中AG(x)是正整数。前五个自然数的x的相应值如下所示。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
xAG(x)(√5-1)/ 41 2/52(√22-2)/ 63(√137-5)/ 144 1/25
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
如果x是理性的,我们将称AG(x)为金块,因为它们变得越来越稀少;例如,第20个金块是211345365.找到前30个金块的总和。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --hints--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
`euler140()`应该返回5673835352990。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
```js
|
2020-12-16 00:37:30 -07:00
|
|
|
|
assert.strictEqual(euler140(), 5673835352990);
|
2018-10-10 18:03:03 -04:00
|
|
|
|
```
|
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
function euler140() {
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
euler140();
|
|
|
|
|
```
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --solutions--
|
2020-08-13 17:24:35 +02:00
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|