* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
987 B
987 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3fa1000cf542c50ff0c | 问题140:改进的斐波那契金块 | 5 | problem-140-modified-fibonacci-golden-nuggets |
--description--
考虑无穷多项式系列AG(x)= xG1 + x2G2 + x3G3 + ...,其中Gk是二阶递归关系的第k项,Gk = Gk-1 + Gk-2,G1 = 1,G2 = 4;也就是说,1,4,5,9,14,23 ......对于这个问题,我们将关注x的值,其中AG(x)是正整数。前五个自然数的x的相应值如下所示。
xAG(x)(√5-1)/ 41 2/52(√22-2)/ 63(√137-5)/ 144 1/25
如果x是理性的,我们将称AG(x)为金块,因为它们变得越来越稀少;例如,第20个金块是211345365.找到前30个金块的总和。
--hints--
euler140()
应该返回5673835352990。
assert.strictEqual(euler140(), 5673835352990);
--seed--
--seed-contents--
function euler140() {
return true;
}
euler140();
--solutions--
// solution required