* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
43 lines
987 B
Markdown
43 lines
987 B
Markdown
---
|
||
id: 5900f3fa1000cf542c50ff0c
|
||
title: 问题140:改进的斐波那契金块
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-140-modified-fibonacci-golden-nuggets
|
||
---
|
||
|
||
# --description--
|
||
|
||
考虑无穷多项式系列AG(x)= xG1 + x2G2 + x3G3 + ...,其中Gk是二阶递归关系的第k项,Gk = Gk-1 + Gk-2,G1 = 1,G2 = 4;也就是说,1,4,5,9,14,23 ......对于这个问题,我们将关注x的值,其中AG(x)是正整数。前五个自然数的x的相应值如下所示。
|
||
|
||
xAG(x)(√5-1)/ 41 2/52(√22-2)/ 63(√137-5)/ 144 1/25
|
||
|
||
如果x是理性的,我们将称AG(x)为金块,因为它们变得越来越稀少;例如,第20个金块是211345365.找到前30个金块的总和。
|
||
|
||
# --hints--
|
||
|
||
`euler140()`应该返回5673835352990。
|
||
|
||
```js
|
||
assert.strictEqual(euler140(), 5673835352990);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler140() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler140();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|