2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
id: 5900f4201000cf542c50ff33
|
2020-12-16 00:37:30 -07:00
|
|
|
|
title: 问题180:三个变量函数的有理零点
|
2018-10-10 18:03:03 -04:00
|
|
|
|
challengeType: 5
|
|
|
|
|
videoUrl: ''
|
2021-01-13 03:31:00 +01:00
|
|
|
|
dashedName: problem-180-rational-zeros-of-a-function-of-three-variables
|
2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --description--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
对于任何整数n,考虑三个函数f1,n(x,y,z)= xn + 1 + yn + 1 - zn + 1f2,n(x,y,z)=(xy + yz + zx)\*( xn-1 + yn-1-zn-1)f3,n(x,y,z)= xyz \*(xn-2 + yn-2-zn-2)及其组合fn(x,y,z)= f1,n(x,y,z)+ f2,n(x,y,z) - f3,n(x,y,z)如果是x,我们将(x,y,z)称为k阶的黄金三元组, y和z都是形式为a / b的有理数,0 <a <b≤k且存在(至少)一个整数n,因此fn(x,y,z)= 0.设s(x ,y,z)= x + y + z。设t = u / v是所有不同s(x,y,z)的所有黄金三元组(x,y,z)的总和。所有s(x,y,z)和t必须在减少形式。找到你+ v。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --hints--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
`euler180()`应该返回285196020571078980。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
```js
|
2020-12-16 00:37:30 -07:00
|
|
|
|
assert.strictEqual(euler180(), 285196020571078980);
|
2018-10-10 18:03:03 -04:00
|
|
|
|
```
|
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
function euler180() {
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
euler180();
|
|
|
|
|
```
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --solutions--
|
2020-08-13 17:24:35 +02:00
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|