freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-180-rational-zeros-of-a-function-of-three-variables.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.1 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4201000cf542c50ff33 问题180三个变量函数的有理零点 5 problem-180-rational-zeros-of-a-function-of-three-variables

--description--

对于任何整数n考虑三个函数f1nxyz= xn + 1 + yn + 1 - zn + 1f2nxyz=xy + yz + zx* xn-1 + yn-1-zn-1f3nxyz= xyz *xn-2 + yn-2-zn-2及其组合fnxyz= f1nxyz+ f2nxyz - f3nxyz如果是x我们将xyz称为k阶的黄金三元组 y和z都是形式为a / b的有理数0 <a <b≤k且存在至少一个整数n因此fnxyz= 0.设sx yz= x + y + z。设t = u / v是所有不同sxyz的所有黄金三元组xyz的总和。所有sxyz和t必须在减少形式。找到你+ v。

--hints--

euler180()应该返回285196020571078980。

assert.strictEqual(euler180(), 285196020571078980);

--seed--

--seed-contents--

function euler180() {

  return true;
}

euler180();

--solutions--

// solution required