* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4201000cf542c50ff33 | 问题180:三个变量函数的有理零点 | 5 | problem-180-rational-zeros-of-a-function-of-three-variables |
--description--
对于任何整数n,考虑三个函数f1,n(x,y,z)= xn + 1 + yn + 1 - zn + 1f2,n(x,y,z)=(xy + yz + zx)*( xn-1 + yn-1-zn-1)f3,n(x,y,z)= xyz *(xn-2 + yn-2-zn-2)及其组合fn(x,y,z)= f1,n(x,y,z)+ f2,n(x,y,z) - f3,n(x,y,z)如果是x,我们将(x,y,z)称为k阶的黄金三元组, y和z都是形式为a / b的有理数,0 <a <b≤k且存在(至少)一个整数n,因此fn(x,y,z)= 0.设s(x ,y,z)= x + y + z。设t = u / v是所有不同s(x,y,z)的所有黄金三元组(x,y,z)的总和。所有s(x,y,z)和t必须在减少形式。找到你+ v。
--hints--
euler180()
应该返回285196020571078980。
assert.strictEqual(euler180(), 285196020571078980);
--seed--
--seed-contents--
function euler180() {
return true;
}
euler180();
--solutions--
// solution required