* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
39 lines
1.1 KiB
Markdown
39 lines
1.1 KiB
Markdown
---
|
||
id: 5900f4201000cf542c50ff33
|
||
title: 问题180:三个变量函数的有理零点
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-180-rational-zeros-of-a-function-of-three-variables
|
||
---
|
||
|
||
# --description--
|
||
|
||
对于任何整数n,考虑三个函数f1,n(x,y,z)= xn + 1 + yn + 1 - zn + 1f2,n(x,y,z)=(xy + yz + zx)\*( xn-1 + yn-1-zn-1)f3,n(x,y,z)= xyz \*(xn-2 + yn-2-zn-2)及其组合fn(x,y,z)= f1,n(x,y,z)+ f2,n(x,y,z) - f3,n(x,y,z)如果是x,我们将(x,y,z)称为k阶的黄金三元组, y和z都是形式为a / b的有理数,0 <a <b≤k且存在(至少)一个整数n,因此fn(x,y,z)= 0.设s(x ,y,z)= x + y + z。设t = u / v是所有不同s(x,y,z)的所有黄金三元组(x,y,z)的总和。所有s(x,y,z)和t必须在减少形式。找到你+ v。
|
||
|
||
# --hints--
|
||
|
||
`euler180()`应该返回285196020571078980。
|
||
|
||
```js
|
||
assert.strictEqual(euler180(), 285196020571078980);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler180() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler180();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|