freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-180-rational-zeros-of-a-function-of-three-variables.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

39 lines
1.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4201000cf542c50ff33
title: 问题180三个变量函数的有理零点
challengeType: 5
videoUrl: ''
dashedName: problem-180-rational-zeros-of-a-function-of-three-variables
---
# --description--
对于任何整数n考虑三个函数f1nxyz= xn + 1 + yn + 1 - zn + 1f2nxyz=xy + yz + zx\* xn-1 + yn-1-zn-1f3nxyz= xyz \*xn-2 + yn-2-zn-2及其组合fnxyz= f1nxyz+ f2nxyz - f3nxyz如果是x我们将xyz称为k阶的黄金三元组 y和z都是形式为a / b的有理数0 &lt;a &lt;b≤k且存在至少一个整数n因此fnxyz= 0.设sx yz= x + y + z。设t = u / v是所有不同sxyz的所有黄金三元组xyz的总和。所有sxyz和t必须在减少形式。找到你+ v。
# --hints--
`euler180()`应该返回285196020571078980。
```js
assert.strictEqual(euler180(), 285196020571078980);
```
# --seed--
## --seed-contents--
```js
function euler180() {
return true;
}
euler180();
```
# --solutions--
```js
// solution required
```