82 lines
1.6 KiB
Markdown
Raw Normal View History

---
id: 5900f3931000cf542c50fea6
title: 问题39整数直角三角形
challengeType: 5
videoUrl: ''
dashedName: problem-39-integer-right-triangles
---
# --description--
如果p是具有整数长度边的直角三角形的周长{abc}则对于p = 120恰好有三个解。{20,48,52}{24,45,51}{ 30,40,50}对于p≤n的值最大化解的数量是多少
# --hints--
`intRightTriangles(500)`应该返回420。
```js
assert(intRightTriangles(500) == 420);
```
`intRightTriangles(800)`应该返回420。
```js
assert(intRightTriangles(800) == 720);
```
`intRightTriangles(900)`应该返回840。
```js
assert(intRightTriangles(900) == 840);
```
`intRightTriangles(1000)`应该返回840。
```js
assert(intRightTriangles(1000) == 840);
```
# --seed--
## --seed-contents--
```js
function intRightTriangles(n) {
return n;
}
intRightTriangles(500);
```
# --solutions--
```js
// Original idea for this solution came from
// https://www.xarg.org/puzzle/project-euler/problem-39/
function intRightTriangles(n) {
// store the number of triangles with a given perimeter
let triangles = {};
// a is the shortest side
for (let a = 3; a < n / 3; a++)
// o is the opposite side and is at least as long as a
for (let o = a; o < n / 2; o++) {
let h = Math.sqrt(a * a + o * o); // hypotenuse
let p = a + o + h; // perimeter
if ((h % 1) === 0 && p <= n) {
triangles[p] = (triangles[p] || 0) + 1;
}
}
let max = 0, maxp = null;
for (let p in triangles) {
if (max < triangles[p]) {
max = triangles[p];
maxp = parseInt(p);
}
}
return maxp;
}
```