* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.6 KiB
1.6 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3931000cf542c50fea6 | 问题39:整数直角三角形 | 5 | problem-39-integer-right-triangles |
--description--
如果p是具有整数长度边的直角三角形的周长{a,b,c},则对于p = 120,恰好有三个解。{20,48,52},{24,45,51},{ 30,40,50}对于p≤n的值,最大化解的数量是多少?
--hints--
intRightTriangles(500)
应该返回420。
assert(intRightTriangles(500) == 420);
intRightTriangles(800)
应该返回420。
assert(intRightTriangles(800) == 720);
intRightTriangles(900)
应该返回840。
assert(intRightTriangles(900) == 840);
intRightTriangles(1000)
应该返回840。
assert(intRightTriangles(1000) == 840);
--seed--
--seed-contents--
function intRightTriangles(n) {
return n;
}
intRightTriangles(500);
--solutions--
// Original idea for this solution came from
// https://www.xarg.org/puzzle/project-euler/problem-39/
function intRightTriangles(n) {
// store the number of triangles with a given perimeter
let triangles = {};
// a is the shortest side
for (let a = 3; a < n / 3; a++)
// o is the opposite side and is at least as long as a
for (let o = a; o < n / 2; o++) {
let h = Math.sqrt(a * a + o * o); // hypotenuse
let p = a + o + h; // perimeter
if ((h % 1) === 0 && p <= n) {
triangles[p] = (triangles[p] || 0) + 1;
}
}
let max = 0, maxp = null;
for (let p in triangles) {
if (max < triangles[p]) {
max = triangles[p];
maxp = parseInt(p);
}
}
return maxp;
}