* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
82 lines
1.6 KiB
Markdown
82 lines
1.6 KiB
Markdown
---
|
||
id: 5900f3931000cf542c50fea6
|
||
title: 问题39:整数直角三角形
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-39-integer-right-triangles
|
||
---
|
||
|
||
# --description--
|
||
|
||
如果p是具有整数长度边的直角三角形的周长{a,b,c},则对于p = 120,恰好有三个解。{20,48,52},{24,45,51},{ 30,40,50}对于p≤n的值,最大化解的数量是多少?
|
||
|
||
# --hints--
|
||
|
||
`intRightTriangles(500)`应该返回420。
|
||
|
||
```js
|
||
assert(intRightTriangles(500) == 420);
|
||
```
|
||
|
||
`intRightTriangles(800)`应该返回420。
|
||
|
||
```js
|
||
assert(intRightTriangles(800) == 720);
|
||
```
|
||
|
||
`intRightTriangles(900)`应该返回840。
|
||
|
||
```js
|
||
assert(intRightTriangles(900) == 840);
|
||
```
|
||
|
||
`intRightTriangles(1000)`应该返回840。
|
||
|
||
```js
|
||
assert(intRightTriangles(1000) == 840);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function intRightTriangles(n) {
|
||
|
||
return n;
|
||
}
|
||
|
||
intRightTriangles(500);
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// Original idea for this solution came from
|
||
// https://www.xarg.org/puzzle/project-euler/problem-39/
|
||
|
||
function intRightTriangles(n) {
|
||
// store the number of triangles with a given perimeter
|
||
let triangles = {};
|
||
// a is the shortest side
|
||
for (let a = 3; a < n / 3; a++)
|
||
// o is the opposite side and is at least as long as a
|
||
for (let o = a; o < n / 2; o++) {
|
||
let h = Math.sqrt(a * a + o * o); // hypotenuse
|
||
let p = a + o + h; // perimeter
|
||
if ((h % 1) === 0 && p <= n) {
|
||
triangles[p] = (triangles[p] || 0) + 1;
|
||
}
|
||
}
|
||
|
||
let max = 0, maxp = null;
|
||
for (let p in triangles) {
|
||
if (max < triangles[p]) {
|
||
max = triangles[p];
|
||
maxp = parseInt(p);
|
||
}
|
||
}
|
||
return maxp;
|
||
}
|
||
```
|