freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-399-squarefree-fibonacci-numbers.md

47 lines
1.6 KiB
Markdown
Raw Normal View History

---
id: 5900f4fc1000cf542c51000e
title: 问题399无自由斐波纳契数
challengeType: 5
videoUrl: ''
dashedName: problem-399-squarefree-fibonacci-numbers
---
# --description--
前15个斐波纳契数是1,1,2,3,5,8,13,21,34,55,89,144,233,377,610。可以看出8和144不是无方形的8可以被4整除144可以被4和9整除。所以前13个无方形的斐波纳契数是1,1,2,3,5,13,21 34,55,89,233,377和610。
第200平方免费斐波那契数是971183874599339129547649988289594072811608739584170445。该数字的最后16位数字是1608739584170445并且在科学记数法中该数字可以写为9.7e53。
找到第100 000个squarefree fibonacci数。给出你的答案它的最后十六位数后跟一个逗号后跟科学记数法的数字四舍五入到小数点后的一位数。对于第200平方免费数字答案应该是1608739584170445,9.7e53
注意对于这个问题假设对于每个素数p可被p整除的第一个斐波纳契数不能被p2整除这是沃尔猜想的一部分。这已被证实适用于≤3·1015的质数但一般尚未得到证实。
如果猜测是假的那么这个问题的接受答案不能保证是第1万个无平方的斐波纳契数而只是它代表了该数的下限。
# --hints--
`euler399()`应返回1508395636674243,6.5e27330467。
```js
assert.strictEqual(euler399(), 1508395636674243, 6.5e27330467);
```
# --seed--
## --seed-contents--
```js
function euler399() {
return true;
}
euler399();
```
# --solutions--
```js
// solution required
```