2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
id: 5900f51d1000cf542c51002f
|
2020-12-16 00:37:30 -07:00
|
|
|
|
title: 问题433:欧几里得算法的步骤
|
2018-10-10 18:03:03 -04:00
|
|
|
|
challengeType: 5
|
|
|
|
|
videoUrl: ''
|
2021-01-13 03:31:00 +01:00
|
|
|
|
dashedName: problem-433-steps-in-euclids-algorithm
|
2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --description--
|
|
|
|
|
|
2020-02-18 01:40:55 +09:00
|
|
|
|
设E(x0,y0)为用Euclid算法确定x0和y0的最大公约数所需要的步数。 更正式地说:x1 = y0,y1 = x0 mod y0xn = yn-1,yn = xn-1 mod yn-1
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
E(x0,y0)是最小的n,因此yn = 0。
|
2020-02-18 01:40:55 +09:00
|
|
|
|
|
|
|
|
|
我们有E(1,1)= 1,E(10,6)= 3和E(6,10)= 4。
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
将S(N)定义为1≤x,y≤N的E(x,y)之和。 我们有S(1)= 1,S(10)= 221和S(100)= 39826。
|
2020-02-18 01:40:55 +09:00
|
|
|
|
|
|
|
|
|
求S(5·106)。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --hints--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
`euler433()`应该返回326624372659664。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
```js
|
2020-12-16 00:37:30 -07:00
|
|
|
|
assert.strictEqual(euler433(), 326624372659664);
|
2018-10-10 18:03:03 -04:00
|
|
|
|
```
|
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
function euler433() {
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
euler433();
|
|
|
|
|
```
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --solutions--
|
2020-08-13 17:24:35 +02:00
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|