* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
859 B
859 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f51d1000cf542c51002f | 问题433:欧几里得算法的步骤 | 5 | problem-433-steps-in-euclids-algorithm |
--description--
设E(x0,y0)为用Euclid算法确定x0和y0的最大公约数所需要的步数。 更正式地说:x1 = y0,y1 = x0 mod y0xn = yn-1,yn = xn-1 mod yn-1
E(x0,y0)是最小的n,因此yn = 0。
我们有E(1,1)= 1,E(10,6)= 3和E(6,10)= 4。
将S(N)定义为1≤x,y≤N的E(x,y)之和。 我们有S(1)= 1,S(10)= 221和S(100)= 39826。
求S(5·106)。
--hints--
euler433()
应该返回326624372659664。
assert.strictEqual(euler433(), 326624372659664);
--seed--
--seed-contents--
function euler433() {
return true;
}
euler433();
--solutions--
// solution required