* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
47 lines
859 B
Markdown
47 lines
859 B
Markdown
---
|
||
id: 5900f51d1000cf542c51002f
|
||
title: 问题433:欧几里得算法的步骤
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-433-steps-in-euclids-algorithm
|
||
---
|
||
|
||
# --description--
|
||
|
||
设E(x0,y0)为用Euclid算法确定x0和y0的最大公约数所需要的步数。 更正式地说:x1 = y0,y1 = x0 mod y0xn = yn-1,yn = xn-1 mod yn-1
|
||
|
||
E(x0,y0)是最小的n,因此yn = 0。
|
||
|
||
我们有E(1,1)= 1,E(10,6)= 3和E(6,10)= 4。
|
||
|
||
将S(N)定义为1≤x,y≤N的E(x,y)之和。 我们有S(1)= 1,S(10)= 221和S(100)= 39826。
|
||
|
||
求S(5·106)。
|
||
|
||
# --hints--
|
||
|
||
`euler433()`应该返回326624372659664。
|
||
|
||
```js
|
||
assert.strictEqual(euler433(), 326624372659664);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler433() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler433();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|