2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
id: 5900f5241000cf542c510036
|
2020-12-16 00:37:30 -07:00
|
|
|
|
title: 问题437:斐波那契原始根
|
2018-10-10 18:03:03 -04:00
|
|
|
|
challengeType: 5
|
|
|
|
|
videoUrl: ''
|
2021-01-13 03:31:00 +01:00
|
|
|
|
dashedName: problem-437-fibonacci-primitive-roots
|
2018-10-10 18:03:03 -04:00
|
|
|
|
---
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --description--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
当我们计算8n模11为n = 0到9时,我们得到:1,8,9,6,4,10,3,2,5,7。我们看到所有可能的值从1到10出现。所以8是11的原始根。但还有更多:如果我们仔细看看,我们看到:1 + 8 = 9 8 + 9 =17≡6mod11 9 + 6 =15≡4mod11 6 + 4 = 10 4 + 10 =14≡3mod11 10 + 3 =13≡2mod11 3 + 2 = 5 2 + 5 = 7 5 + 7 =12≡1mod11。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
因此,8 mod 11的幂是循环的,具有周期10,并且8n + 8n +1≡8n+ 2(mod 11)。 8被称为11的斐波那契原始根。不是每个素数都有斐波那契原始根。有一个或多个Fibonacci原始根有323个小于10000的素数,这些素数的总和是1480491.用至少一个Fibonacci原始根找到小于100,000,000的素数之和。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --hints--
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
`euler437()`应该返回74204709657207。
|
2018-10-10 18:03:03 -04:00
|
|
|
|
|
|
|
|
|
```js
|
2020-12-16 00:37:30 -07:00
|
|
|
|
assert.strictEqual(euler437(), 74204709657207);
|
2018-10-10 18:03:03 -04:00
|
|
|
|
```
|
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
# --seed--
|
|
|
|
|
|
|
|
|
|
## --seed-contents--
|
|
|
|
|
|
|
|
|
|
```js
|
|
|
|
|
function euler437() {
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
euler437();
|
|
|
|
|
```
|
|
|
|
|
|
2020-12-16 00:37:30 -07:00
|
|
|
|
# --solutions--
|
2020-08-13 17:24:35 +02:00
|
|
|
|
|
2021-01-13 03:31:00 +01:00
|
|
|
|
```js
|
|
|
|
|
// solution required
|
|
|
|
|
```
|