Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.1 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f5241000cf542c510036 问题437斐波那契原始根 5 problem-437-fibonacci-primitive-roots

--description--

当我们计算8n模11为n = 0到9时我们得到1,8,9,6,4,10,3,2,5,7。我们看到所有可能的值从1到10出现。所以8是11的原始根。但还有更多如果我们仔细看看我们看到1 + 8 = 9 8 + 9 =17≡6mod11 9 + 6 =15≡4mod11 6 + 4 = 10 4 + 10 =14≡3mod11 10 + 3 =13≡2mod11 3 + 2 = 5 2 + 5 = 7 5 + 7 =12≡1mod11。

因此8 mod 11的幂是循环的具有周期10并且8n + 8n +1≡8n+ 2mod 11。 8被称为11的斐波那契原始根。不是每个素数都有斐波那契原始根。有一个或多个Fibonacci原始根有323个小于10000的素数这些素数的总和是1480491.用至少一个Fibonacci原始根找到小于100,000,000的素数之和。

--hints--

euler437()应该返回74204709657207。

assert.strictEqual(euler437(), 74204709657207);

--seed--

--seed-contents--

function euler437() {

  return true;
}

euler437();

--solutions--

// solution required