* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f5241000cf542c510036 | 问题437:斐波那契原始根 | 5 | problem-437-fibonacci-primitive-roots |
--description--
当我们计算8n模11为n = 0到9时,我们得到:1,8,9,6,4,10,3,2,5,7。我们看到所有可能的值从1到10出现。所以8是11的原始根。但还有更多:如果我们仔细看看,我们看到:1 + 8 = 9 8 + 9 =17≡6mod11 9 + 6 =15≡4mod11 6 + 4 = 10 4 + 10 =14≡3mod11 10 + 3 =13≡2mod11 3 + 2 = 5 2 + 5 = 7 5 + 7 =12≡1mod11。
因此,8 mod 11的幂是循环的,具有周期10,并且8n + 8n +1≡8n+ 2(mod 11)。 8被称为11的斐波那契原始根。不是每个素数都有斐波那契原始根。有一个或多个Fibonacci原始根有323个小于10000的素数,这些素数的总和是1480491.用至少一个Fibonacci原始根找到小于100,000,000的素数之和。
--hints--
euler437()
应该返回74204709657207。
assert.strictEqual(euler437(), 74204709657207);
--seed--
--seed-contents--
function euler437() {
return true;
}
euler437();
--solutions--
// solution required