89 lines
1.3 KiB
Markdown
Raw Normal View History

---
id: 5900f3761000cf542c50fe88
title: 问题9特殊的毕达哥拉斯三重奏
challengeType: 5
videoUrl: ''
dashedName: problem-9-special-pythagorean-triplet
---
# --description--
毕达哥拉斯三元组是一组三个自然数, `a` < `b` < `c` ,其中,
`a`
<sup>2</sup>
- `b`
<sup>2</sup>
= `c`
<sup>2</sup>
例如3
<sup>2</sup>
- 4
<sup>2</sup>
= 9 + 16 = 25 = 5
<sup>2</sup>
。恰好存在一个毕达哥拉斯三元组,其中`a` + `b` + `c` = 1000.求产品`abc`使得`a` + `b` + `c` = `n`
# --hints--
`specialPythagoreanTriplet(1000)`应返回31875000。
```js
assert.strictEqual(specialPythagoreanTriplet(1000), 31875000);
```
`specialPythagoreanTriplet(24)`应该返回480。
```js
assert.strictEqual(specialPythagoreanTriplet(24), 480);
```
`specialPythagoreanTriplet(120)`应该返回49920。
```js
assert([49920, 55080, 60000].includes(specialPythagoreanTriplet(120)));
```
# --seed--
## --seed-contents--
```js
function specialPythagoreanTriplet(n) {
let sumOfabc = n;
return true;
}
specialPythagoreanTriplet(1000);
```
# --solutions--
```js
const specialPythagoreanTriplet = (n)=>{
let sumOfabc = n;
let a,b,c;
for(a = 1; a<=sumOfabc/3; a++){
for(b = a+1; b<=sumOfabc/2; b++){
c = Math.sqrt(a*a+b*b);
if((a+b+c) == sumOfabc){
return a*b*c;
}
}
}
}
```