Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.3 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f3761000cf542c50fe88 问题9特殊的毕达哥拉斯三重奏 5 problem-9-special-pythagorean-triplet

--description--

毕达哥拉斯三元组是一组三个自然数, a < b < c ,其中,

a

2

  • b

2

= c

2

例如3

2

  • 4

2

= 9 + 16 = 25 = 5

2

。恰好存在一个毕达哥拉斯三元组,其中a + b + c = 1000.求产品abc使得a + b + c = n

--hints--

specialPythagoreanTriplet(1000)应返回31875000。

assert.strictEqual(specialPythagoreanTriplet(1000), 31875000);

specialPythagoreanTriplet(24)应该返回480。

assert.strictEqual(specialPythagoreanTriplet(24), 480);

specialPythagoreanTriplet(120)应该返回49920。

assert([49920, 55080, 60000].includes(specialPythagoreanTriplet(120)));

--seed--

--seed-contents--

function specialPythagoreanTriplet(n) {
 let sumOfabc = n;

 return true;
}

specialPythagoreanTriplet(1000);

--solutions--

const specialPythagoreanTriplet = (n)=>{
 let sumOfabc = n;
 let a,b,c;
 for(a = 1; a<=sumOfabc/3; a++){
 for(b = a+1; b<=sumOfabc/2; b++){
 c = Math.sqrt(a*a+b*b);
 if((a+b+c) == sumOfabc){
 return a*b*c;
 }
 }
 }
}