2020-04-21 11:19:42 -04:00
|
|
|
---
|
|
|
|
id: 5e8f2f13c4cdbe86b5c72d9e
|
2020-04-24 05:52:42 -05:00
|
|
|
title: 'Natural Language Processing With RNNs: Sentiment Analysis'
|
2020-04-21 11:19:42 -04:00
|
|
|
challengeType: 11
|
|
|
|
videoId: lYeLtu8Nq7c
|
2021-01-13 03:31:00 +01:00
|
|
|
dashedName: natural-language-processing-with-rnns-sentiment-analysis
|
2020-04-21 11:19:42 -04:00
|
|
|
---
|
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
# --question--
|
2020-04-21 11:19:42 -04:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
## --text--
|
2020-04-21 11:19:42 -04:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
Fill in the blanks below to create the model for the RNN:
|
2020-05-28 22:40:36 +09:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
```py
|
|
|
|
model = __A__.keras.Sequential([
|
|
|
|
__A__.keras.layers.__B__(88584, 32),
|
|
|
|
__A__.keras.layers.__C__(32),
|
|
|
|
__A__.keras.layers.DENSE(1, activation='sigmoid')
|
|
|
|
])
|
|
|
|
```
|
2020-05-28 22:40:36 +09:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
## --answers--
|
2020-05-28 22:40:36 +09:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
A: `tensor_flow`
|
2020-05-28 22:40:36 +09:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
B: `embedding`
|
2020-05-28 22:40:36 +09:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
C: `LSTM`
|
2020-05-28 22:40:36 +09:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
---
|
2020-05-28 22:40:36 +09:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
A: `tf`
|
2020-05-28 22:40:36 +09:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
B: `Embedding`
|
|
|
|
|
|
|
|
C: `AlphaDropout`
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
A: `tf`
|
|
|
|
|
|
|
|
B: `Embedding`
|
|
|
|
|
|
|
|
C: `LSTM`
|
|
|
|
|
|
|
|
## --video-solution--
|
2020-04-21 11:19:42 -04:00
|
|
|
|
2020-11-27 19:02:05 +01:00
|
|
|
3
|
2020-04-21 11:19:42 -04:00
|
|
|
|