55 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			55 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								title: Adding Fractions
							 | 
						|||
| 
								 | 
							
								---
							 | 
						|||
| 
								 | 
							
								## Adding Fractions
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								A fraction is generally used to represent a number which is a ratio of two numbers. 
							 | 
						|||
| 
								 | 
							
								<br>Consider the fraction <span class="fraction"><sup>4</sup>⁄<sub>5</sub></span>, here 4 is called the numerator and 5 is called the denominator. 
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								#### Adding fractions with common denominator
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Add the numerators of both fractions and put the resultant over the denominator.
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								###### Example 1
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Consider fractions <span class="fraction"><sup>4</sup>⁄<sub>5</sub></span> and <span class="fraction"><sup>3</sup>⁄<sub>5</sub></span>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								1. The denominator of the fractions is common.
							 | 
						|||
| 
								 | 
							
								2. The numerators are 4 and 3
							 | 
						|||
| 
								 | 
							
								3. Add the numerators, 4 + 3 = 7
							 | 
						|||
| 
								 | 
							
								4. Place the resultant over the common denominator
							 | 
						|||
| 
								 | 
							
								5. Simplify the resultant fraction, if possible
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								<pre>  <span class="fraction"><sup>4</sup>⁄<sub>5</sub></span> + <span class="fraction"><sup>3</sup>⁄<sub>5</sub></span> = <span class="fraction"><sup>7</sup>⁄<sub>5</sub></span> </pre>
							 | 
						|||
| 
								 | 
							
								###### Example 2
							 | 
						|||
| 
								 | 
							
								<pre>  <span class="fraction"><sup>5</sup>⁄<sub>16</sub></span> + <span class="fraction"><sup>3</sup>⁄<sub>16</sub></span> = <span class="fraction"><sup>8</sup>⁄<sub>16</sub></span> (Simplifying it further, <span class="fraction"><sup>8</sup>⁄<sub>16</sub></span> = <span class="fraction"><sup>1</sup>⁄<sub>2</sub></span>) </pre>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								#### Adding fractions with different denominators
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								1. Convert the fractions to equivalent fractions with common denominator
							 | 
						|||
| 
								 | 
							
								2. To convert two fractions to common denominator, multiply the numerator and denominator of a fraction with the denominator of the other fraction.
							 | 
						|||
| 
								 | 
							
								3. Now that the fractions have common denominators, add the numerators of both fractions and put the resultant over the denominator
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								   Consider, <span class="fraction"><sup>a</sup>⁄<sub>b</sub></span> and <span class="fraction"><sup>c</sup>⁄<sub>d</sub></span>  are fractions with different denominators, you can add these fractions in a single step like below,
							 | 
						|||
| 
								 | 
							
								<br>
							 | 
						|||
| 
								 | 
							
								<pre>  <span class="fraction"><sup>a</sup>⁄<sub>b</sub></span> + <span class="fraction"><sup>c</sup>⁄<sub>d</sub></span> = <span class="fraction"><sup>(a * d) + (b * c)</sup>⁄<sub>(b * d)</sub></span> </pre>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								###### Example
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								Consider fractions <span class="fraction"><sup>5</sup>⁄<sub>6</sub></span> and <span class="fraction"><sup>5</sup>⁄<sub>15</sub></span>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								1. The denominators are different. So you need to make the denominators common
							 | 
						|||
| 
								 | 
							
								2. Before that, if possible, simplify the fractions. In this case, <span class="fraction"><sup>5</sup>⁄<sub>15</sub></span> can be simplified as <span class="fraction"><sup>1</sup>⁄<sub>3</sub></span>. Here <span class="fraction"><sup>5</sup>⁄<sub>15</sub></span> and <span class="fraction"><sup>1</sup>⁄<sub>3</sub></span> are called equivalent fractions.
							 | 
						|||
| 
								 | 
							
								3. After simplification, the fractions are <span class="fraction"><sup>5</sup>⁄<sub>6</sub></span> and <span class="fraction"><sup>1</sup>⁄<sub>3</sub></span>.
							 | 
						|||
| 
								 | 
							
								4. Now to add these fractions, you must make the denominators common
							 | 
						|||
| 
								 | 
							
								5. Multiply the numerator and denominator of a fraction with denominator of the other
							 | 
						|||
| 
								 | 
							
								6. For fraction <span class="fraction"><sup>5</sup>⁄<sub>6</sub></span> , the denominator of the other fraction is 3. For fraction <span class="fraction"><sup>1</sup>⁄<sub>3</sub></span> , the denominator of the other fraction is 6
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								<pre>  <span class="fraction"><sup>((5 * 3) + (1 * 6))</sup>⁄<sub>(6 * 3)</sub></span> = <span class="fraction"><sup>21</sup>⁄<sub>18</sub></span> </pre>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								7. The resultant fraction is <span class="fraction"><sup>21</sup>⁄<sub>18</sub></span>. This can be further simplified as <span class="fraction"><sup>7</sup>⁄<sub>6</sub></span>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								<pre>  <span class="fraction"><sup>5</sup>⁄<sub>6</sub></span> + <span class="fraction"><sup>5</sup>⁄<sub>15</sub></span> = <span class="fraction"><sup>7</sup>⁄<sub>6</sub></span> </pre>
							 | 
						|||
| 
								 | 
							
								
							 | 
						|||
| 
								 | 
							
								<span class="fraction"><sup>7</sup>⁄<sub>6</sub></span> is equivalent to 1 and <span class="fraction"><sup>1</sup>⁄<sub>6</sub></span>
							 |