Files
freeCodeCamp/curriculum/challenges/spanish/08-coding-interview-prep/project-euler/problem-53-combinatoric-selections.spanish.md

92 lines
2.3 KiB
Markdown
Raw Normal View History

---
id: 5
localeTitle: 5900f3a11000cf542c50feb4
challengeType: 5
title: 'Problem 53: Combinatoric selections'
---
## Description
<section id='description'>
Hay exactamente diez formas de seleccionar tres de cinco, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245 y 345
En combinatoria, usamos la notación, 5C3 = 10.
In general,
nCr =
n! r! (n r)!
, donde r ≤ n, n! = n × (n 1) × ... × 3 × 2 × 1, y 0! = 1.
No es hasta n = 23, que un valor excede de un millón: 23C10 = 1144066.
¿Cuántos, no necesariamente distintos, valores de nCr, para 1 ≤ n ≤ 100, son mayores que un millón? ?
</section>
## Instructions
<section id='instructions'>
</section>
## Tests
<section id='tests'>
```yml
tests:
- text: <code>combinatoricSelections(1000)</code> deben devolver 4626.
testString: 'assert.strictEqual(combinatoricSelections(1000), 4626, "<code>combinatoricSelections(1000)</code> should return 4626.");'
- text: <code>combinatoricSelections(10000)</code> deben devolver 4431.
testString: 'assert.strictEqual(combinatoricSelections(10000), 4431, "<code>combinatoricSelections(10000)</code> should return 4431.");'
- text: <code>combinatoricSelections(100000)</code> deben devolver 4255.
testString: 'assert.strictEqual(combinatoricSelections(100000), 4255, "<code>combinatoricSelections(100000)</code> should return 4255.");'
- text: <code>combinatoricSelections(1000000)</code> deben devolver 4075.
testString: 'assert.strictEqual(combinatoricSelections(1000000), 4075, "<code>combinatoricSelections(1000000)</code> should return 4075.");'
```
</section>
## Challenge Seed
<section id='challengeSeed'>
<div id='js-seed'>
```js
function combinatoricSelections(limit) {
// Good luck!
return 1;
}
combinatoricSelections(1000000);
```
</div>
</section>
## Solution
<section id='solution'>
```js
function combinatoricSelections(limit) {
const factorial = n =>
Array.apply(null, { length: n })
.map((_, i) => i + 1)
.reduce((p, c) => p * c, 1);
let result = 0;
const nMax = 100;
for (let n = 1; n <= nMax; n++) {
for (let r = 0; r <= n; r++) {
if (factorial(n) / (factorial(r) * factorial(n - r)) >= limit)
result++;
}
}
return result;
}
```
</section>