| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | --- | 
					
						
							|  |  |  | id: 5900f4ea1000cf542c50fffc | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | title: 'Problema 381: Fatorial (k-primo)' | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | challengeType: 5 | 
					
						
							|  |  |  | forumTopicId: 302045 | 
					
						
							|  |  |  | dashedName: problem-381-prime-k-factorial | 
					
						
							|  |  |  | --- | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --description--
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | Para um número primo $p$, considere $S(p) = (\sum (p - k)!)\bmod (p)$ para $1 ≤ k ≤ 5$. | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | Por exemplo, se $p = 7$, | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | $$(7 - 1)! + (7 - 2)! + (7 - 3)! + (7 - 4)! + (7 - 5)! = 6! + 5! + 4! + 3! + 2! = 720 + 120 + 24 + 6 + 2 = 872$$ | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | Como $872\bmod (7) = 4$, $S(7) = 4$. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Pode-se verificar que $\sum S(p) = 480$ para $5 ≤ p < 100$. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Encontre a $\sum S(p)$ para $5 ≤ p < {10}^8$. | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | # --hints--
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | `primeKFactorial()` deve retornar `139602943319822`. | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | assert.strictEqual(primeKFactorial(), 139602943319822); | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --seed--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ## --seed-contents--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | function primeKFactorial() { | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |   return true; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-11-23 11:06:14 -08:00
										 |  |  | primeKFactorial(); | 
					
						
							| 
									
										
										
										
											2021-06-15 00:49:18 -07:00
										 |  |  | ``` | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | # --solutions--
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | ```js | 
					
						
							|  |  |  | // solution required | 
					
						
							|  |  |  | ``` |