53 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			53 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								title: How to Multiply Matrices
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								## How to Multiply Matrices
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The first immportant rule is: the number of columns in matrix A must match number of rows in column B.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The second rule to calculate the product of two matrices is: Line X Column.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Matrix_multiplication_principle.svg/320px-Matrix_multiplication_principle.svg.png" width="300" height="150">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The resulting matrix dimension will be rows of first matrix X columns of second matrix.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Let A and B be two matrices of dimension 2, that is, 2 X 2. Their product will be:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<img src="http://www.i-programmer.info/images/stories/News/2011/DEC/A/matrix1.jpg" width="400" height="150">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The rows of the the resuting matrix is the sum of product of first matrix row elements by second matrix column elements.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#### Example
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Let A be a 2 X 3 matrix and B be a 3 X 2 matrix. The product AB will be:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								* **Step 1**
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<img src="http://www.mathportal.org/linear-algebra/matrices/matrix-operations_files/12.gif">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								* **Step 2**
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<img src="http://www.mathportal.org/linear-algebra/matrices/matrix-operations_files/13.gif">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								* **Step 3**
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<img src="http://www.mathportal.org/linear-algebra/matrices/matrix-operations_files/14.gif">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								* **Step 4**
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								<img src="http://www.mathportal.org/linear-algebra/matrices/matrix-operations_files/15.gif">
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#### Attention!
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Differently from real numbers algebra, the product AB is not always equal to BA. Calculate it using the example above and find out.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#### More Information:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 |