Эта серия проблем приведет к созданию структуры данных дерева. Деревья - важная и универсальная структура данных в информатике. Конечно, их имя исходит из того факта, что при визуализации они очень похожи на деревья, с которыми мы знакомы в естественном мире. Структура данных дерева начинается с одного узла, обычно называемого корнем, и отсюда разветвляется на дополнительные узлы, каждый из которых может иметь больше дочерних узлов и т. Д. И т. Д. Структура данных обычно визуализируется с корневым узлом вверху; вы можете думать об этом, как естественное дерево перевернулось вверх дном. Сначала давайте опишем некоторую общую терминологию, с которой мы столкнемся с деревьями. Корневой узел - это вершина дерева. Точки данных в дереве называются узлами. Узлы с ветвями, ведущими к другим узлам, называются родителями узла, к которому ведет ветвь (дочерний элемент). Другие более сложные семейные термины применяются, как и следовало ожидать. Поддерево относится ко всем потомкам конкретного узла, ветви могут упоминаться как ребра, а листовые узлы - узлы в конце дерева, у которых нет детей. Наконец, обратите внимание, что деревья являются по своей природе рекурсивными структурами данных. То есть, любые дочерние узлы являются родителями собственного поддерева и так далее. Рекурсивный характер деревьев важен для понимания при разработке алгоритмов для общих операций дерева. Для начала обсудим конкретный тип дерева - двоичное дерево. Фактически, мы фактически обсудим конкретное двоичное дерево, двоичное дерево поиска. Давайте опишем, что это значит. Хотя структура данных дерева может иметь любое количество ветвей в одном узле, двоичное дерево может иметь только две ветви для каждого узла. Кроме того, двоичное дерево поиска упорядочено относительно дочерних поддеревьев, так что значение каждого узла в левом поддереве меньше или равно значению родительского узла, а значение каждого узла в правом поддереве равно больше или равно значению родительского узла. Очень полезно визуализировать эти отношения, чтобы лучше понять это: <divstyle="width: 100%; display: flex; justify-content: center; align-items: center;"><imgstyle="width: 100%; max-width: 350px;"src="https://user-images.githubusercontent.com/18563015/32136009-1e665d98-bbd6-11e7-9133-63184f9f9182.png"></div> Теперь это упорядоченное отношение очень легко увидеть. Об
We'll start simple. We've defined the skeleton of a binary search tree structure here in addition to a function to create nodes for our tree. Observe that each node may have a left and right value. These will be assigned child subtrees if they exist. In our binary search tree, define two methods, <code>findMin</code> and <code>findMax</code>. These methods should return the minimum and maximum value held in the binary search tree (don't worry about adding values to the tree for now, we have added some in the background). If you get stuck, reflect on the invariant that must be true for binary search trees: each left subtree is less than or equal to its parent and each right subtree is greater than or equal to its parent. Let's also say that our tree can only store integer values. If the tree is empty, either method should return <code>null</code>.
- text: The <code>BinarySearchTree</code> data structure exists.
testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() }; return (typeof test == 'object')})());
- text: The binary search tree has a method called <code>findMin</code>.
testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; return (typeof test.findMin == 'function')})());
- text: The binary search tree has a method called <code>findMax</code>.
testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; return (typeof test.findMax == 'function')})());
- text: The <code>findMin</code> method returns the minimum value in the binary search tree.
testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; if (typeof test.findMin !== 'function') { return false; }; test.add(4); test.add(1); test.add(7); test.add(87); test.add(34); test.add(45); test.add(73); test.add(8); return test.findMin() == 1; })());
- text: The <code>findMax</code> method returns the maximum value in the binary search tree.
testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; if (typeof test.findMax !== 'function') { return false; }; test.add(4); test.add(1); test.add(7); test.add(87); test.add(34); test.add(45); test.add(73); test.add(8); return test.findMax() == 87; })());
- text: The <code>findMin</code> and <code>findMax</code> methods return <code>null</code> for an empty tree.
testString: assert((function() { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree() } else { return false; }; if (typeof test.findMin !== 'function') { return false; }; if (typeof test.findMax !== 'function') { return false; }; return (test.findMin() == null && test.findMax() == null) })());