feat(seed): Added more assertions for Project Euler (#16057)
This commit is contained in:
committed by
Quincy Larson
parent
224684ed45
commit
04cf144c9f
@ -1139,21 +1139,24 @@
|
|||||||
"type": "bonfire",
|
"type": "bonfire",
|
||||||
"title": "Problem 37: Truncatable primes",
|
"title": "Problem 37: Truncatable primes",
|
||||||
"tests": [
|
"tests": [
|
||||||
"assert.strictEqual(euler37(), 748317, 'message: <code>euler37()</code> should return 748317.');"
|
"assert(truncatablePrimes(8) == 1986, 'message: <code>truncatablePrimes(8)</code> should return 1986.');",
|
||||||
|
"assert(truncatablePrimes(9) == 5123, 'message: <code>truncatablePrimes(9)</code> should return 5123.');",
|
||||||
|
"assert(truncatablePrimes(10) == 8920, 'message: <code>truncatablePrimes(10)</code> should return 8920.');",
|
||||||
|
"assert(truncatablePrimes(11) == 748317, 'message: <code>truncatablePrimes(11)</code> should return 748317.');"
|
||||||
],
|
],
|
||||||
"solutions": [],
|
"solutions": [],
|
||||||
"translations": {},
|
"translations": {},
|
||||||
"challengeSeed": [
|
"challengeSeed": [
|
||||||
"function euler37() {",
|
"function truncatablePrimes(n) {",
|
||||||
" // Good luck!",
|
" // Good luck!",
|
||||||
" return true;",
|
" return n;",
|
||||||
"}",
|
"}",
|
||||||
"",
|
"",
|
||||||
"euler37();"
|
"truncatablePrimes(11);"
|
||||||
],
|
],
|
||||||
"description": [
|
"description": [
|
||||||
"The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.",
|
"The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.",
|
||||||
"Find the sum of the only eleven primes that are both truncatable from left to right and right to left.",
|
"Find the sum of the only n (8 <= n <= 11) primes that are both truncatable from left to right and right to left.",
|
||||||
"NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes."
|
"NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
Reference in New Issue
Block a user