chore(i18n,learn): processed translations (#45313)

This commit is contained in:
camperbot
2022-03-02 20:56:06 +05:30
committed by GitHub
parent 339c6713d2
commit 27cfaf178c
58 changed files with 778 additions and 676 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f4e11000cf542c50fff3
title: 'Problem 372: Pencils of rays'
title: 'Problema 372: Raggi di matite'
challengeType: 5
forumTopicId: 302034
dashedName: problem-372-pencils-of-rays
@ -8,16 +8,20 @@ dashedName: problem-372-pencils-of-rays
# --description--
Let R(M, N) be the number of lattice points (x, y) which satisfy M
Sia $R(M, N)$ il numero di punti di reticolo ($x$, $y$) che soddisfa $M \lt x \le N$, $M \lt y \le N$ e $\left\lfloor\frac{y^2}{x^2}\right\rfloor$ è dispari.
Note: represents the floor function.
Possiamo verificare che $R(0, 100) = 3\\,019$ e $R(100, 10\\,000) = 29\\,750\\,422$.
Trova $R(2 \times {10}^6, {10}^9)$.
**Nota:** $\lfloor x\rfloor$ è la funzione che arrotonda verso il basso.
# --hints--
`euler372()` should return 301450082318807040.
`pencilsOfRays()` dovrebbe restituire `301450082318807040`.
```js
assert.strictEqual(euler372(), 301450082318807040);
assert.strictEqual(pencilsOfRays(), 301450082318807040);
```
# --seed--
@ -25,12 +29,12 @@ assert.strictEqual(euler372(), 301450082318807040);
## --seed-contents--
```js
function euler372() {
function pencilsOfRays() {
return true;
}
euler372();
pencilsOfRays();
```
# --solutions--