GCD function using Recursion in Python and Java (#25226)
function in Python and method in Java to perform gcd using recursion
This commit is contained in:
committed by
Randell Dawson
parent
99cf6090bd
commit
36e356e6fd
@ -65,6 +65,29 @@ function gcd(a, b) {
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Python Code to Perform GCD using Recursion
|
||||||
|
```Python
|
||||||
|
def gcd(a, b):
|
||||||
|
if b == 0:
|
||||||
|
return a:
|
||||||
|
else:
|
||||||
|
return gcd(b, (a % b))
|
||||||
|
```
|
||||||
|
|
||||||
|
Java Code to Perform GCD using Recursion
|
||||||
|
```Java
|
||||||
|
static int gcd(int a, int b)
|
||||||
|
{
|
||||||
|
if(b == 0)
|
||||||
|
{
|
||||||
|
return a;
|
||||||
|
}
|
||||||
|
return gcd(b, a % b);
|
||||||
|
}
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
You can also use the Euclidean Algorithm to find GCD of more than two numbers.
|
You can also use the Euclidean Algorithm to find GCD of more than two numbers.
|
||||||
Since, GCD is associative, the following operation is valid- `GCD(a,b,c) == GCD(GCD(a,b), c)`
|
Since, GCD is associative, the following operation is valid- `GCD(a,b,c) == GCD(GCD(a,b), c)`
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user