fix(curriculum): clean-up Project Euler 462-480 (#43069)
* fix: clean-up Project Euler 462-480 * fix: missing image extension * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
This commit is contained in:
@ -8,26 +8,41 @@ dashedName: problem-467-superinteger
|
||||
|
||||
# --description--
|
||||
|
||||
An integer s is called a superinteger of another integer n if the digits of n form a subsequence of the digits of s.
|
||||
An integer $s$ is called a superinteger of another integer $n$ if the digits of $n$ form a subsequence of the digits of $s$.
|
||||
|
||||
For example, 2718281828 is a superinteger of 18828, while 314159 is not a superinteger of 151.
|
||||
|
||||
Let p(n) be the nth prime number, and let c(n) be the nth composite number. For example, p(1) = 2, p(10) = 29, c(1) = 4 and c(10) = 18. {p(i) : i ≥ 1} = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...} {c(i) : i ≥ 1} = {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ...}
|
||||
Let $p(n)$ be the $n$th prime number, and let $c(n)$ be the $n$th composite number. For example, $p(1) = 2$, $p(10) = 29$, $c(1) = 4$ and $c(10) = 18$.
|
||||
|
||||
Let PD the sequence of the digital roots of {p(i)} (CD is defined similarly for {c(i)}): PD = {2, 3, 5, 7, 2, 4, 8, 1, 5, 2, ...} CD = {4, 6, 8, 9, 1, 3, 5, 6, 7, 9, ...}
|
||||
$$\begin{align}
|
||||
& \\{p(i) : i ≥ 1\\} = \\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots \\} \\\\
|
||||
& \\{c(i) : i ≥ 1\\} = \\{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, \ldots \\}
|
||||
\end{align}$$
|
||||
|
||||
Let Pn be the integer formed by concatenating the first n elements of PD (Cn is defined similarly for CD). P10 = 2357248152 C10 = 4689135679
|
||||
Let $P^D$ the sequence of the digital roots of $\\{p(i)\\}$ ($C^D$ is defined similarly for $\\{c(i)\\}$):
|
||||
|
||||
Let f(n) be the smallest positive integer that is a common superinteger of Pn and Cn. For example, f(10) = 2357246891352679, and f(100) mod 1 000 000 007 = 771661825.
|
||||
$$\begin{align}
|
||||
& P^D = \\{2, 3, 5, 7, 2, 4, 8, 1, 5, 2, \ldots \\} \\\\
|
||||
& C^D = \\{4, 6, 8, 9, 1, 3, 5, 6, 7, 9, \ldots \\}
|
||||
\end{align}$$
|
||||
|
||||
Find f(10 000) mod 1 000 000 007.
|
||||
Let $P_n$ be the integer formed by concatenating the first $n$ elements of $P^D$ ($C_n$ is defined similarly for $C^D$).
|
||||
|
||||
$$\begin{align}
|
||||
& P_{10} = 2\\,357\\,248\\,152 \\\\
|
||||
& C_{10} = 4\\,689\\,135\\,679
|
||||
\end{align}$$
|
||||
|
||||
Let $f(n)$ be the smallest positive integer that is a common superinteger of $P_n$ and $C_n$. For example, $f(10) = 2\\,357\\,246\\,891\\,352\\,679$, and $f(100)\bmod 1\\,000\\,000\\,007 = 771\\,661\\,825$.
|
||||
|
||||
Find $f(10\\,000)\bmod 1\\,000\\,000\\,007$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler467()` should return 775181359.
|
||||
`superinteger()` should return `775181359`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler467(), 775181359);
|
||||
assert.strictEqual(superinteger(), 775181359);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
@ -35,12 +50,12 @@ assert.strictEqual(euler467(), 775181359);
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler467() {
|
||||
function superinteger() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler467();
|
||||
superinteger();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
Reference in New Issue
Block a user