chore(i18n,learn): processed translations (#45333)

This commit is contained in:
camperbot
2022-03-04 19:46:29 +05:30
committed by GitHub
parent e24c8abc7f
commit 3d3972f2dd
113 changed files with 1394 additions and 1111 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f5041000cf542c510016
title: 'Problem 407: Idempotents'
title: 'Problema 407: Idempotenti'
challengeType: 5
forumTopicId: 302075
dashedName: problem-407-idempotents
@ -8,18 +8,20 @@ dashedName: problem-407-idempotents
# --description--
If we calculate a2 mod 6 for 0 ≤ a ≤ 5 we get: 0,1,4,3,4,1.
Se calcoliamo $a^2\bmod 6$ per $0 ≤ a ≤ 5$ otteniamo: 0, 1, 4, 3, 4, 1.
The largest value of a such that a2 ≡ a mod 6 is 4. Let's call M(n) the largest value of a < n such that a2 ≡ a (mod n). So M(6) = 4.
Il valore più grande di un tale $a^2 ≡ a\bmod 6$ è $4$.
Find ∑M(n) for 1 ≤ n ≤ 107.
Chiamiamo $M(n)$ il valore più grande di $a < n$ tale che $a^2 ≡ a (\text{mod } n)$. Quindi $M(6) = 4$.
Trova $\sum M(n)$ per $1 ≤ n ≤ {10}^7$.
# --hints--
`euler407()` should return 39782849136421.
`idempotents()` dovrebbe restituire `39782849136421`.
```js
assert.strictEqual(euler407(), 39782849136421);
assert.strictEqual(idempotents(), 39782849136421);
```
# --seed--
@ -27,12 +29,12 @@ assert.strictEqual(euler407(), 39782849136421);
## --seed-contents--
```js
function euler407() {
function idempotents() {
return true;
}
euler407();
idempotents();
```
# --solutions--