chore(i18n,learn): processed translations (#45333)

This commit is contained in:
camperbot
2022-03-04 19:46:29 +05:30
committed by GitHub
parent e24c8abc7f
commit 3d3972f2dd
113 changed files with 1394 additions and 1111 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f5061000cf542c510017
title: 'Problem 409: Nim Extreme'
title: 'Problema 409: Nim Extreme'
challengeType: 5
forumTopicId: 302077
dashedName: problem-409-nim-extreme
@ -8,24 +8,24 @@ dashedName: problem-409-nim-extreme
# --description--
Let n be a positive integer. Consider nim positions where:There are n non-empty piles.
Sia $n$ un numero intero positivo. Considera le posizioni nim dove:
Each pile has size less than 2n.
- Ci sono $n$ pile non vuote.
- Ogni pila ha dimensioni inferiori a $2^n$.
- Nessuna coppia di pile ha la stessa dimensione.
No two piles have the same size.
Sia $W(n)$ il numero di posizioni nim vincenti che soddisfano le condizioni di cui sopra (una posizione vince se il primo giocatore ha una strategia vincente).
Let W(n) be the number of winning nim positions satisfying the above
For example, $W(1) = 1$, $W(2) = 6$, $W(3) = 168$, $W(5) = 19\\,764\\,360$ and $W(100)\bmod 1\\,000\\,000\\,007 = 384\\,777\\,056$.
conditions (a position is winning if the first player has a winning strategy). For example, W(1) = 1, W(2) = 6, W(3) = 168, W(5) = 19764360 and W(100) mod 1 000 000 007 = 384777056.
Find W(10 000 000) mod 1 000 000 007.
Trova $W(10\\,000\\,000)\bmod 1\\,000\\,000\\,007$.
# --hints--
`euler409()` should return 253223948.
`nimExtreme()` dovrebbe restituire `253223948`.
```js
assert.strictEqual(euler409(), 253223948);
assert.strictEqual(nimExtreme(), 253223948);
```
# --seed--
@ -33,12 +33,12 @@ assert.strictEqual(euler409(), 253223948);
## --seed-contents--
```js
function euler409() {
function nimExtreme() {
return true;
}
euler409();
nimExtreme();
```
# --solutions--