chore(i18n,learn): processed translations (#45333)

This commit is contained in:
camperbot
2022-03-04 19:46:29 +05:30
committed by GitHub
parent e24c8abc7f
commit 3d3972f2dd
113 changed files with 1394 additions and 1111 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f5181000cf542c51002a
title: 'Problem 427: n-sequences'
title: 'Problema 427: n-sequenze'
challengeType: 5
forumTopicId: 302097
dashedName: problem-427-n-sequences
@ -8,24 +8,24 @@ dashedName: problem-427-n-sequences
# --description--
A sequence of integers S = {si} is called an n-sequence if it has n elements and each element si satisfies 1 ≤ si ≤ n. Thus there are nn distinct n-sequences in total.
Una sequenza di numeri interi $S = \\{s_i\\}$ è chiamata una $n$-sequenza se ha $n$ elementi e ogni elemento $s_i$ soddisfa $1 ≤ s_i ≤ n$. Quindi ci sono $n^n$ $n$-sequenze distinte in totale.
For example, the sequence S = {1, 5, 5, 10, 7, 7, 7, 2, 3, 7} is a 10-sequence.
Per esempio, la sequenza $S = \\{1, 5, 5, 10, 7, 7, 7, 2, 3, 7\\}$ è una 10-sequenza.
For any sequence S, let L(S) be the length of the longest contiguous subsequence of S with the same value. For example, for the given sequence S above, L(S) = 3, because of the three consecutive 7's.
Per ogni sequenza $S$, sia $L(S)$ la lunghezza della sottosequenza contigua più lunga di $S$ con lo stesso valore. Per esempio, data la sequenza $S$ sopra, $L(S) = 3$, per i tre 7 consecutivi.
Let f(n) = L(S) for all n-sequences S.
Sia $f(n) = \sum L(S)$ per tutte le $n$-sequenza $S$.
For example, f(3) = 45, f(7) = 1403689 and f(11) = 481496895121.
Per esempio, $f(3) = 45$, $f(7) = 1\\,403\\,689$ e $f(11) = 481\\,496\\,895\\,121$.
Find f(7 500 000) mod 1 000 000 009.
Trova $f(7\\,500\\,000)\bmod 1\\,000\\,000\\,009$.
# --hints--
`euler427()` should return 97138867.
`nSequences()` dovrebbe restituire `97138867`.
```js
assert.strictEqual(euler427(), 97138867);
assert.strictEqual(nSequences(), 97138867);
```
# --seed--
@ -33,12 +33,12 @@ assert.strictEqual(euler427(), 97138867);
## --seed-contents--
```js
function euler427() {
function nSequences() {
return true;
}
euler427();
nSequences();
```
# --solutions--