chore(i18n,learn): processed translations (#45333)

This commit is contained in:
camperbot
2022-03-04 19:46:29 +05:30
committed by GitHub
parent e24c8abc7f
commit 3d3972f2dd
113 changed files with 1394 additions and 1111 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f5271000cf542c51003a
title: 'Problem 443: GCD sequence'
title: 'Problema 443: sequenza GCD'
challengeType: 5
forumTopicId: 302115
dashedName: problem-443-gcd-sequence
@ -8,24 +8,24 @@ dashedName: problem-443-gcd-sequence
# --description--
Let g(n) be a sequence defined as follows: g(4) = 13, g(n) = g(n-1) + gcd(n, g(n-1)) for n > 4.
Sia $g(n)$ una sequenza definita come segue:
The first few values are:
$$\begin{align} & g(4) = 13, \\\\ & g(n) = g(n-1) + gcd(n, g(n - 1)) \text{ for } n > 4. \end{align}$$
n 4567891011121314151617181920... g(n) 1314161718272829303132333451545560...
I primi valori sono:
<!-- TODO Use MathJax -->
$$\begin{array}{l} n & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & \ldots \\\\ g(n) & 13 & 14 & 16 & 17 & 18 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 51 & 54 & 55 & 60 & \ldots \end{array}$$
You are given that g(1 000) = 2524 and g(1 000 000) = 2624152.
Ti viene dato che $g(1\\,000) = 2\\,524$ and $g(1\\,000\\,000) = 2\\,624\\,152$.
Find g(1015).
Trova $g({10}^{15})$.
# --hints--
`euler443()` should return 2744233049300770.
`gcdSequence()` dovrebbe restituire `2744233049300770`.
```js
assert.strictEqual(euler443(), 2744233049300770);
assert.strictEqual(gcdSequence(), 2744233049300770);
```
# --seed--
@ -33,12 +33,12 @@ assert.strictEqual(euler443(), 2744233049300770);
## --seed-contents--
```js
function euler443() {
function gcdSequence() {
return true;
}
euler443();
gcdSequence();
```
# --solutions--