chore(i18n,learn): processed translations (#44866)

This commit is contained in:
camperbot
2022-01-22 20:38:20 +05:30
committed by GitHub
parent d039479e66
commit 43a2a0a395
324 changed files with 2907 additions and 2916 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f4b71000cf542c50ffc9
title: 'Problem 330: Euler''s Number'
title: '問題 330: オイラー数'
challengeType: 5
forumTopicId: 301988
dashedName: problem-330-eulers-number
@ -8,25 +8,25 @@ dashedName: problem-330-eulers-number
# --description--
An infinite sequence of real numbers $a(n)$ is defined for all integers $n$ as follows:
すべての整数 $n$ について、実数の無限数列 $a(n)$ は次のように定義されます。
$$ a(n) = \begin{cases} 1 & n < 0 \\\\ \displaystyle \sum_{i = 1}^{\infty} \frac{a(n - 1)}{i!} & n \ge 0 \end{cases} $$
For example,
例えば次のようになります
$$\begin{align} & a(0) = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = e 1 \\\\ & a(1) = \frac{e 1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = 2e 3 \\\\ & a(2) = \frac{2e 3}{1!} + \frac{e 1}{2!} + \frac{1}{3!} + \ldots = \frac{7}{2} e 6 \end{align}$$
with $e = 2.7182818\ldots$ being Euler's constant.
ここで$e = 2.7182818\ldots$ はオイラーの定数です
It can be shown that $a(n)$ is of the form $\displaystyle\frac{A(n)e + B(n)}{n!}$ for integers $A(n)$ and $B(n)$.
$a(n)$ 整数 $A(n)$ と整数 $B(n)$ に対して $\displaystyle\frac{A(n)e + B(n)}{n!}$ の形式であることが分かります
For example $\displaystyle a(10) = \frac{328161643e 652694486}{10!}$.
例えば$\displaystyle a(10) = \frac{328161643e 652694486}{10!}$ です
Find $A({10}^9)$ + $B({10}^9)$ and give your answer $\bmod 77\\,777\\,777$.
$A({10}^9)$ + $B({10}^9)$ を求め$\bmod 77\\,777\\,777$ で答えなさい
# --hints--
`eulersNumber()` should return `15955822`.
`eulersNumber()` `15955822` を返す必要があります
```js
assert.strictEqual(eulersNumber(), 15955822);