chore(i18n,learn): processed translations (#44866)
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
---
|
||||
id: 5900f5061000cf542c510017
|
||||
title: 'Problem 409: Nim Extreme'
|
||||
title: '問題 409: 極端なニム (石取りゲーム)'
|
||||
challengeType: 5
|
||||
forumTopicId: 302077
|
||||
dashedName: problem-409-nim-extreme
|
||||
@ -8,21 +8,21 @@ dashedName: problem-409-nim-extreme
|
||||
|
||||
# --description--
|
||||
|
||||
Let $n$ be a positive integer. Consider nim positions where:
|
||||
$n$ を正の整数とします。 次のような二ム (石取りゲーム) の配置について考えます。
|
||||
|
||||
- There are $n$ non-empty piles.
|
||||
- Each pile has size less than $2^n$.
|
||||
- No two piles have the same size.
|
||||
- 空でない山が $n$ 個ある。
|
||||
- それぞれの山のサイズは $2^n$ 未満である。
|
||||
- 同じサイズの山はない。
|
||||
|
||||
Let $W(n)$ be the number of winning nim positions satisfying the above conditions (a position is winning if the first player has a winning strategy).
|
||||
上の条件を満たすような、二ムの勝利ポジション (先手が必勝戦略を持つようなポジション) の数を $W(n)$ とします 。
|
||||
|
||||
For example, $W(1) = 1$, $W(2) = 6$, $W(3) = 168$, $W(5) = 19\\,764\\,360$ and $W(100)\bmod 1\\,000\\,000\\,007 = 384\\,777\\,056$.
|
||||
例えば、$W(1) = 1$, $W(2) = 6$, $W(3) = 168$, $W(5) = 19\\,764\\,360$, $W(100)\bmod 1\\,000\\,000\\,007 = 384\\,777\\,056$ です。
|
||||
|
||||
Find $W(10\\,000\\,000)\bmod 1\\,000\\,000\\,007$.
|
||||
$W(10\\,000\\,000)\bmod 1\\,000\\,000\\,007$ を求めなさい。
|
||||
|
||||
# --hints--
|
||||
|
||||
`nimExtreme()` should return `253223948`.
|
||||
`nimExtreme()` は `253223948` を返す必要があります。
|
||||
|
||||
```js
|
||||
assert.strictEqual(nimExtreme(), 253223948);
|
||||
|
Reference in New Issue
Block a user