chore(i18n,learn): processed translations (#44866)

This commit is contained in:
camperbot
2022-01-22 20:38:20 +05:30
committed by GitHub
parent d039479e66
commit 43a2a0a395
324 changed files with 2907 additions and 2916 deletions

View File

@ -1,6 +1,6 @@
---
id: 5900f5411000cf542c510052
title: 'Problem 467: Superinteger'
title: '問題 467: 超越整数'
challengeType: 5
forumTopicId: 302142
dashedName: problem-467-superinteger
@ -8,29 +8,29 @@ dashedName: problem-467-superinteger
# --description--
An integer $s$ is called a superinteger of another integer $n$ if the digits of $n$ form a subsequence of the digits of $s$.
整数 $n$ の数字が別の整数 $s$ の数字の部分列になる場合、整数 $s$ を整数 $n$ の「超越整数」と呼ぶことにします。
For example, 2718281828 is a superinteger of 18828, while 314159 is not a superinteger of 151.
例えば、2718281828 は 18828 の超越整数ですが、314159 は 151 の超越整数ではありません。
Let $p(n)$ be the $n$th prime number, and let $c(n)$ be the $n$th composite number. For example, $p(1) = 2$, $p(10) = 29$, $c(1) = 4$ and $c(10) = 18$.
$p(n)$ を $n$ 番目の素数とし、$c(n)$ を $n$ 番目の合成数とします。 例えば、$p(1) = 2$, $p(10) = 29$, $c(1) = 4$, $c(10) = 18$ です。
$$\begin{align} & \\{p(i) : i ≥ 1\\} = \\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots \\} \\\\ & \\{c(i) : i ≥ 1\\} = \\{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, \ldots \\} \end{align}$$
Let $P^D$ the sequence of the digital roots of $\\{p(i)\\}$ ($C^D$ is defined similarly for $\\{c(i)\\}$):
$\\{p(i)\\}$ の数字根からなる数列を $P^D$ とすると、次のようになります ($C^D$ は $\\{c(i)\\}$ に対して同様に定義されます)。
$$\begin{align} & P^D = \\{2, 3, 5, 7, 2, 4, 8, 1, 5, 2, \ldots \\} \\\\ & C^D = \\{4, 6, 8, 9, 1, 3, 5, 6, 7, 9, \ldots \\} \end{align}$$
Let $P_n$ be the integer formed by concatenating the first $n$ elements of $P^D$ ($C_n$ is defined similarly for $C^D$).
$P^D$ の最初の $n$ 個の要素をつなげた整数を $P_n$ とします ($C_n$ は $C^D$ に対して同様に定義されます)。
$$\begin{align} & P_{10} = 2\\,357\\,248\\,152 \\\\ & C_{10} = 4\\,689\\,135\\,679 \end{align}$$
Let $f(n)$ be the smallest positive integer that is a common superinteger of $P_n$ and $C_n$. For example, $f(10) = 2\\,357\\,246\\,891\\,352\\,679$, and $f(100)\bmod 1\\,000\\,000\\,007 = 771\\,661\\,825$.
$P_n$ と $C_n$ の共通の超越整数である最小の正の整数を、$f(n)$ とします。 例えば、$f(10) = 2\\,357\\,246\\,891\\,352\\,679$, $f(100)\bmod 1\\,000\\,000\\,007 = 771\\,661\\,825$ です。
Find $f(10\\,000)\bmod 1\\,000\\,000\\,007$.
$f(10\\,000)\bmod 1\\,000\\,000\\,007$ を求めなさい。
# --hints--
`superinteger()` should return `775181359`.
`superinteger()` `775181359` を返す必要があります。
```js
assert.strictEqual(superinteger(), 775181359);