fix(curriculum): clean-up Project Euler 281-300 (#42922)

* fix: clean-up Project Euler 281-300

* fix: missing image extension

* fix: missing power

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

* fix: missing subscript

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>

Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
This commit is contained in:
gikf
2021-07-22 05:38:46 +02:00
committed by GitHub
parent fed983d69f
commit 47fc3c6761
20 changed files with 238 additions and 169 deletions

View File

@ -8,20 +8,26 @@ dashedName: problem-284-steady-squares
# --description--
The 3-digit number 376 in the decimal numbering system is an example of numbers with the special property that its square ends with the same digits: 3762 = 141376. Let's call a number with this property a steady square.
The 3-digit number 376 in the decimal numbering system is an example of numbers with the special property that its square ends with the same digits: ${376}^2 = 141376$. Let's call a number with this property a steady square.
Steady squares can also be observed in other numbering systems. In the base 14 numbering system, the 3-digit number c37 is also a steady square: c372 = aa0c37, and the sum of its digits is c+3+7=18 in the same numbering system. The letters a, b, c and d are used for the 10, 11, 12 and 13 digits respectively, in a manner similar to the hexadecimal numbering system.
Steady squares can also be observed in other numbering systems. In the base 14 numbering system, the 3-digit number $c37$ is also a steady square: $c37^2 = aa0c37$, and the sum of its digits is $c+3+7=18$ in the same numbering system. The letters $a$, $b$, $c$ and $d$ are used for the 10, 11, 12 and 13 digits respectively, in a manner similar to the hexadecimal numbering system.
For 1 ≤ n ≤ 9, the sum of the digits of all the n-digit steady squares in the base 14 numbering system is 2d8 (582 decimal). Steady squares with leading 0's are not allowed.
For $1 ≤ n ≤ 9$, the sum of the digits of all the $n$-digit steady squares in the base 14 numbering system is $2d8$ (582 decimal). Steady squares with leading 0's are not allowed.
Find the sum of the digits of all the n-digit steady squares in the base 14 numbering system for 1 ≤ n ≤ 10000 (decimal) and give your answer in the base 14 system using lower case letters where necessary.
Find the sum of the digits of all the $n$-digit steady squares in the base 14 numbering system for $1 ≤ n ≤ 10000$ (decimal) and give your answer as a string in the base 14 system using lower case letters where necessary.
# --hints--
`euler284()` should return 5a411d7b.
`steadySquares()` should return a string.
```js
assert.strictEqual(euler284(), '5a411d7b');
assert(typeof steadySquares() === 'string');
```
`steadySquares()` should return the string `5a411d7b`.
```js
assert.strictEqual(steadySquares(), '5a411d7b');
```
# --seed--
@ -29,12 +35,12 @@ assert.strictEqual(euler284(), '5a411d7b');
## --seed-contents--
```js
function euler284() {
function steadySquares() {
return true;
}
euler284();
steadySquares();
```
# --solutions--