Updated index.md in data-science-tools/pandas (#29575)

Added information about functions like Concatenation, Joining & Merging.
This commit is contained in:
Rahul Soni
2018-12-18 08:57:14 +05:30
committed by Christopher McCormack
parent 7b4f3d02de
commit 4ffab3310b

View File

@ -113,6 +113,40 @@ import matplotlib
matplotlib.style.use('ggplot')
df['ColumnName'].plot.hist()
```
## Concatenation
Concatenation basically glues together DataFrames. Keep in mind that dimensions should match along the axis you are concatenating on. You can use **pd.concat** and pass in a list of DataFrames to concatenate together:
```python
pd.concat([df1,df2,df3])
```
## Merging
The **merge** function allows you to merge DataFrames together using a similar logic as merging SQL Tables together. For example:
```python
pd.merge(left,right,how='inner',on='key')
```
## Joining
Joining is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame.
```python
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
'B': ['B0', 'B1', 'B2']},
index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
'D': ['D0', 'D2', 'D3']},
index=['K0', 'K2', 'K3'])
```
```python
left.join(right)
```
#### More Information:
1. [pandas](http://pandas.pydata.org/)