fix(curriculum): rework Project Euler 69 (#41974)
* fix: rework challenge to use argument in function * fix: use mathjax for consistent phi letter * fix: add solution * fix: re-align table formatting
This commit is contained in:
		@@ -8,40 +8,58 @@ dashedName: problem-69-totient-maximum
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
# --description--
 | 
					# --description--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
 | 
					Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<div style='margin-left: 4em;'>
 | 
					<div style='margin-left: 4em;'>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| <var>n</var> | Relatively Prime | φ(<var>n</var>) | <var>n</var>/φ(<var>n</var>) |
 | 
					| $n$ | $\text{Relatively Prime}$ | $\displaystyle{\phi}(n)$ | $\displaystyle\frac{n}{{\phi}(n)}$ |
 | 
				
			||||||
| ------------ | ---------------- | --------------- | ---------------------------- |
 | 
					| --- | ------------------------- | ------------------------ | ---------------------------------- |
 | 
				
			||||||
| 2            | 1                | 1               | 2                            |
 | 
					| 2   | 1                         | 1                        | 2                                  |
 | 
				
			||||||
| 3            | 1,2              | 2               | 1.5                          |
 | 
					| 3   | 1,2                       | 2                        | 1.5                                |
 | 
				
			||||||
| 4            | 1,3              | 2               | 2                            |
 | 
					| 4   | 1,3                       | 2                        | 2                                  |
 | 
				
			||||||
| 5            | 1,2,3,4          | 4               | 1.25                         |
 | 
					| 5   | 1,2,3,4                   | 4                        | 1.25                               |
 | 
				
			||||||
| 6            | 1,5              | 2               | 3                            |
 | 
					| 6   | 1,5                       | 2                        | 3                                  |
 | 
				
			||||||
| 7            | 1,2,3,4,5,6      | 6               | 1.1666...                    |
 | 
					| 7   | 1,2,3,4,5,6               | 6                        | 1.1666...                          |
 | 
				
			||||||
| 8            | 1,3,5,7          | 4               | 2                            |
 | 
					| 8   | 1,3,5,7                   | 4                        | 2                                  |
 | 
				
			||||||
| 9            | 1,2,4,5,7,8      | 6               | 1.5                          |
 | 
					| 9   | 1,2,4,5,7,8               | 6                        | 1.5                                |
 | 
				
			||||||
| 10           | 1,3,7,9          | 4               | 2.5                          |
 | 
					| 10  | 1,3,7,9                   | 4                        | 2.5                                |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
</div>
 | 
					</div>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
It can be seen that `n`=6 produces a maximum `n`/φ(`n`) for `n` ≤ 10.
 | 
					It can be seen that `n` = 6 produces a maximum $\displaystyle\frac{n}{{\phi}(n)}$ for `n` ≤ 10.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Find the value of `n` ≤ 1,000,000 for which n/φ(`n`) is a maximum.
 | 
					Find the value of `n` ≤ `limit` for which $\displaystyle\frac{n}{{\phi(n)}}$ is a maximum.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --hints--
 | 
					# --hints--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
`totientMaximum()` should return a number.
 | 
					`totientMaximum(10)` should return a number.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
assert(typeof totientMaximum() === 'number');
 | 
					assert(typeof totientMaximum(10) === 'number');
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
`totientMaximum()` should return 510510.
 | 
					`totientMaximum(10)` should return `6`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
assert.strictEqual(totientMaximum(), 510510);
 | 
					assert.strictEqual(totientMaximum(10), 6);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`totientMaximum(10000)` should return `2310`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(totientMaximum(10000), 2310);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`totientMaximum(500000)` should return `30030`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(totientMaximum(500000), 30030);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`totientMaximum(1000000)` should return `510510`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(totientMaximum(1000000), 510510);
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --seed--
 | 
					# --seed--
 | 
				
			||||||
@@ -49,16 +67,44 @@ assert.strictEqual(totientMaximum(), 510510);
 | 
				
			|||||||
## --seed-contents--
 | 
					## --seed-contents--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
function totientMaximum() {
 | 
					function totientMaximum(limit) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return true;
 | 
					  return true;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
totientMaximum();
 | 
					totientMaximum(10);
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --solutions--
 | 
					# --solutions--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
// solution required
 | 
					function totientMaximum(limit) {
 | 
				
			||||||
 | 
					  function getSievePrimes(max) {
 | 
				
			||||||
 | 
					    const primesMap = new Array(max).fill(true);
 | 
				
			||||||
 | 
					    primesMap[0] = false;
 | 
				
			||||||
 | 
					    primesMap[1] = false;
 | 
				
			||||||
 | 
					    const primes = [];
 | 
				
			||||||
 | 
					    for (let i = 2; i < max; i = i + 2) {
 | 
				
			||||||
 | 
					      if (primesMap[i]) {
 | 
				
			||||||
 | 
					        primes.push(i);
 | 
				
			||||||
 | 
					        for (let j = i * i; j < max; j = j + i) {
 | 
				
			||||||
 | 
					          primesMap[j] = false;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					      if (i === 2) {
 | 
				
			||||||
 | 
					        i = 1;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    return primes;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  const MAX_PRIME = 50;
 | 
				
			||||||
 | 
					  const primes = getSievePrimes(MAX_PRIME);
 | 
				
			||||||
 | 
					  let result = 1;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for (let i = 0; result * primes[i] < limit; i++) {
 | 
				
			||||||
 | 
					    result *= primes[i];
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return result;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user