fix(curriculum): rework Project Euler 69 (#41974)
* fix: rework challenge to use argument in function * fix: use mathjax for consistent phi letter * fix: add solution * fix: re-align table formatting
This commit is contained in:
@ -8,40 +8,58 @@ dashedName: problem-69-totient-maximum
|
|||||||
|
|
||||||
# --description--
|
# --description--
|
||||||
|
|
||||||
Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
|
Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$.
|
||||||
|
|
||||||
<div style='margin-left: 4em;'>
|
<div style='margin-left: 4em;'>
|
||||||
|
|
||||||
| <var>n</var> | Relatively Prime | φ(<var>n</var>) | <var>n</var>/φ(<var>n</var>) |
|
| $n$ | $\text{Relatively Prime}$ | $\displaystyle{\phi}(n)$ | $\displaystyle\frac{n}{{\phi}(n)}$ |
|
||||||
| ------------ | ---------------- | --------------- | ---------------------------- |
|
| --- | ------------------------- | ------------------------ | ---------------------------------- |
|
||||||
| 2 | 1 | 1 | 2 |
|
| 2 | 1 | 1 | 2 |
|
||||||
| 3 | 1,2 | 2 | 1.5 |
|
| 3 | 1,2 | 2 | 1.5 |
|
||||||
| 4 | 1,3 | 2 | 2 |
|
| 4 | 1,3 | 2 | 2 |
|
||||||
| 5 | 1,2,3,4 | 4 | 1.25 |
|
| 5 | 1,2,3,4 | 4 | 1.25 |
|
||||||
| 6 | 1,5 | 2 | 3 |
|
| 6 | 1,5 | 2 | 3 |
|
||||||
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
|
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
|
||||||
| 8 | 1,3,5,7 | 4 | 2 |
|
| 8 | 1,3,5,7 | 4 | 2 |
|
||||||
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
|
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
|
||||||
| 10 | 1,3,7,9 | 4 | 2.5 |
|
| 10 | 1,3,7,9 | 4 | 2.5 |
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
It can be seen that `n`=6 produces a maximum `n`/φ(`n`) for `n` ≤ 10.
|
It can be seen that `n` = 6 produces a maximum $\displaystyle\frac{n}{{\phi}(n)}$ for `n` ≤ 10.
|
||||||
|
|
||||||
Find the value of `n` ≤ 1,000,000 for which n/φ(`n`) is a maximum.
|
Find the value of `n` ≤ `limit` for which $\displaystyle\frac{n}{{\phi(n)}}$ is a maximum.
|
||||||
|
|
||||||
# --hints--
|
# --hints--
|
||||||
|
|
||||||
`totientMaximum()` should return a number.
|
`totientMaximum(10)` should return a number.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert(typeof totientMaximum() === 'number');
|
assert(typeof totientMaximum(10) === 'number');
|
||||||
```
|
```
|
||||||
|
|
||||||
`totientMaximum()` should return 510510.
|
`totientMaximum(10)` should return `6`.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert.strictEqual(totientMaximum(), 510510);
|
assert.strictEqual(totientMaximum(10), 6);
|
||||||
|
```
|
||||||
|
|
||||||
|
`totientMaximum(10000)` should return `2310`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(totientMaximum(10000), 2310);
|
||||||
|
```
|
||||||
|
|
||||||
|
`totientMaximum(500000)` should return `30030`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(totientMaximum(500000), 30030);
|
||||||
|
```
|
||||||
|
|
||||||
|
`totientMaximum(1000000)` should return `510510`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(totientMaximum(1000000), 510510);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --seed--
|
# --seed--
|
||||||
@ -49,16 +67,44 @@ assert.strictEqual(totientMaximum(), 510510);
|
|||||||
## --seed-contents--
|
## --seed-contents--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
function totientMaximum() {
|
function totientMaximum(limit) {
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
totientMaximum();
|
totientMaximum(10);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --solutions--
|
# --solutions--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
// solution required
|
function totientMaximum(limit) {
|
||||||
|
function getSievePrimes(max) {
|
||||||
|
const primesMap = new Array(max).fill(true);
|
||||||
|
primesMap[0] = false;
|
||||||
|
primesMap[1] = false;
|
||||||
|
const primes = [];
|
||||||
|
for (let i = 2; i < max; i = i + 2) {
|
||||||
|
if (primesMap[i]) {
|
||||||
|
primes.push(i);
|
||||||
|
for (let j = i * i; j < max; j = j + i) {
|
||||||
|
primesMap[j] = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (i === 2) {
|
||||||
|
i = 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return primes;
|
||||||
|
}
|
||||||
|
|
||||||
|
const MAX_PRIME = 50;
|
||||||
|
const primes = getSievePrimes(MAX_PRIME);
|
||||||
|
let result = 1;
|
||||||
|
|
||||||
|
for (let i = 0; result * primes[i] < limit; i++) {
|
||||||
|
result *= primes[i];
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
Reference in New Issue
Block a user