fix(curriculum): rework Project Euler 69 (#41974)
* fix: rework challenge to use argument in function * fix: use mathjax for consistent phi letter * fix: add solution * fix: re-align table formatting
This commit is contained in:
		@@ -8,12 +8,12 @@ dashedName: problem-69-totient-maximum
 | 
			
		||||
 | 
			
		||||
# --description--
 | 
			
		||||
 | 
			
		||||
Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
 | 
			
		||||
Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$.
 | 
			
		||||
 | 
			
		||||
<div style='margin-left: 4em;'>
 | 
			
		||||
 | 
			
		||||
| <var>n</var> | Relatively Prime | φ(<var>n</var>) | <var>n</var>/φ(<var>n</var>) |
 | 
			
		||||
| ------------ | ---------------- | --------------- | ---------------------------- |
 | 
			
		||||
| $n$ | $\text{Relatively Prime}$ | $\displaystyle{\phi}(n)$ | $\displaystyle\frac{n}{{\phi}(n)}$ |
 | 
			
		||||
| --- | ------------------------- | ------------------------ | ---------------------------------- |
 | 
			
		||||
| 2   | 1                         | 1                        | 2                                  |
 | 
			
		||||
| 3   | 1,2                       | 2                        | 1.5                                |
 | 
			
		||||
| 4   | 1,3                       | 2                        | 2                                  |
 | 
			
		||||
@@ -26,22 +26,40 @@ Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used
 | 
			
		||||
 | 
			
		||||
</div>
 | 
			
		||||
 | 
			
		||||
It can be seen that `n`=6 produces a maximum `n`/φ(`n`) for `n` ≤ 10.
 | 
			
		||||
It can be seen that `n` = 6 produces a maximum $\displaystyle\frac{n}{{\phi}(n)}$ for `n` ≤ 10.
 | 
			
		||||
 | 
			
		||||
Find the value of `n` ≤ 1,000,000 for which n/φ(`n`) is a maximum.
 | 
			
		||||
Find the value of `n` ≤ `limit` for which $\displaystyle\frac{n}{{\phi(n)}}$ is a maximum.
 | 
			
		||||
 | 
			
		||||
# --hints--
 | 
			
		||||
 | 
			
		||||
`totientMaximum()` should return a number.
 | 
			
		||||
`totientMaximum(10)` should return a number.
 | 
			
		||||
 | 
			
		||||
```js
 | 
			
		||||
assert(typeof totientMaximum() === 'number');
 | 
			
		||||
assert(typeof totientMaximum(10) === 'number');
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
`totientMaximum()` should return 510510.
 | 
			
		||||
`totientMaximum(10)` should return `6`.
 | 
			
		||||
 | 
			
		||||
```js
 | 
			
		||||
assert.strictEqual(totientMaximum(), 510510);
 | 
			
		||||
assert.strictEqual(totientMaximum(10), 6);
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
`totientMaximum(10000)` should return `2310`.
 | 
			
		||||
 | 
			
		||||
```js
 | 
			
		||||
assert.strictEqual(totientMaximum(10000), 2310);
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
`totientMaximum(500000)` should return `30030`.
 | 
			
		||||
 | 
			
		||||
```js
 | 
			
		||||
assert.strictEqual(totientMaximum(500000), 30030);
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
`totientMaximum(1000000)` should return `510510`.
 | 
			
		||||
 | 
			
		||||
```js
 | 
			
		||||
assert.strictEqual(totientMaximum(1000000), 510510);
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
# --seed--
 | 
			
		||||
@@ -49,16 +67,44 @@ assert.strictEqual(totientMaximum(), 510510);
 | 
			
		||||
## --seed-contents--
 | 
			
		||||
 | 
			
		||||
```js
 | 
			
		||||
function totientMaximum() {
 | 
			
		||||
function totientMaximum(limit) {
 | 
			
		||||
 | 
			
		||||
  return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
totientMaximum();
 | 
			
		||||
totientMaximum(10);
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
# --solutions--
 | 
			
		||||
 | 
			
		||||
```js
 | 
			
		||||
// solution required
 | 
			
		||||
function totientMaximum(limit) {
 | 
			
		||||
  function getSievePrimes(max) {
 | 
			
		||||
    const primesMap = new Array(max).fill(true);
 | 
			
		||||
    primesMap[0] = false;
 | 
			
		||||
    primesMap[1] = false;
 | 
			
		||||
    const primes = [];
 | 
			
		||||
    for (let i = 2; i < max; i = i + 2) {
 | 
			
		||||
      if (primesMap[i]) {
 | 
			
		||||
        primes.push(i);
 | 
			
		||||
        for (let j = i * i; j < max; j = j + i) {
 | 
			
		||||
          primesMap[j] = false;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
      if (i === 2) {
 | 
			
		||||
        i = 1;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return primes;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  const MAX_PRIME = 50;
 | 
			
		||||
  const primes = getSievePrimes(MAX_PRIME);
 | 
			
		||||
  let result = 1;
 | 
			
		||||
 | 
			
		||||
  for (let i = 0; result * primes[i] < limit; i++) {
 | 
			
		||||
    result *= primes[i];
 | 
			
		||||
  }
 | 
			
		||||
  return result;
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user