fix(curriculum): rework Project Euler 69 (#41974)
* fix: rework challenge to use argument in function * fix: use mathjax for consistent phi letter * fix: add solution * fix: re-align table formatting
This commit is contained in:
@ -8,40 +8,58 @@ dashedName: problem-69-totient-maximum
|
||||
|
||||
# --description--
|
||||
|
||||
Euler's Totient function, φ(`n`) \[sometimes called the phi function], is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.
|
||||
Euler's Totient function, ${\phi}(n)$ (sometimes called the phi function), is used to determine the number of numbers less than `n` which are relatively prime to `n`. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, ${\phi}(9) = 6$.
|
||||
|
||||
<div style='margin-left: 4em;'>
|
||||
|
||||
| <var>n</var> | Relatively Prime | φ(<var>n</var>) | <var>n</var>/φ(<var>n</var>) |
|
||||
| ------------ | ---------------- | --------------- | ---------------------------- |
|
||||
| 2 | 1 | 1 | 2 |
|
||||
| 3 | 1,2 | 2 | 1.5 |
|
||||
| 4 | 1,3 | 2 | 2 |
|
||||
| 5 | 1,2,3,4 | 4 | 1.25 |
|
||||
| 6 | 1,5 | 2 | 3 |
|
||||
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
|
||||
| 8 | 1,3,5,7 | 4 | 2 |
|
||||
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
|
||||
| 10 | 1,3,7,9 | 4 | 2.5 |
|
||||
| $n$ | $\text{Relatively Prime}$ | $\displaystyle{\phi}(n)$ | $\displaystyle\frac{n}{{\phi}(n)}$ |
|
||||
| --- | ------------------------- | ------------------------ | ---------------------------------- |
|
||||
| 2 | 1 | 1 | 2 |
|
||||
| 3 | 1,2 | 2 | 1.5 |
|
||||
| 4 | 1,3 | 2 | 2 |
|
||||
| 5 | 1,2,3,4 | 4 | 1.25 |
|
||||
| 6 | 1,5 | 2 | 3 |
|
||||
| 7 | 1,2,3,4,5,6 | 6 | 1.1666... |
|
||||
| 8 | 1,3,5,7 | 4 | 2 |
|
||||
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
|
||||
| 10 | 1,3,7,9 | 4 | 2.5 |
|
||||
|
||||
</div>
|
||||
|
||||
It can be seen that `n`=6 produces a maximum `n`/φ(`n`) for `n` ≤ 10.
|
||||
It can be seen that `n` = 6 produces a maximum $\displaystyle\frac{n}{{\phi}(n)}$ for `n` ≤ 10.
|
||||
|
||||
Find the value of `n` ≤ 1,000,000 for which n/φ(`n`) is a maximum.
|
||||
Find the value of `n` ≤ `limit` for which $\displaystyle\frac{n}{{\phi(n)}}$ is a maximum.
|
||||
|
||||
# --hints--
|
||||
|
||||
`totientMaximum()` should return a number.
|
||||
`totientMaximum(10)` should return a number.
|
||||
|
||||
```js
|
||||
assert(typeof totientMaximum() === 'number');
|
||||
assert(typeof totientMaximum(10) === 'number');
|
||||
```
|
||||
|
||||
`totientMaximum()` should return 510510.
|
||||
`totientMaximum(10)` should return `6`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(totientMaximum(), 510510);
|
||||
assert.strictEqual(totientMaximum(10), 6);
|
||||
```
|
||||
|
||||
`totientMaximum(10000)` should return `2310`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(totientMaximum(10000), 2310);
|
||||
```
|
||||
|
||||
`totientMaximum(500000)` should return `30030`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(totientMaximum(500000), 30030);
|
||||
```
|
||||
|
||||
`totientMaximum(1000000)` should return `510510`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(totientMaximum(1000000), 510510);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
@ -49,16 +67,44 @@ assert.strictEqual(totientMaximum(), 510510);
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function totientMaximum() {
|
||||
function totientMaximum(limit) {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
totientMaximum();
|
||||
totientMaximum(10);
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
||||
```js
|
||||
// solution required
|
||||
function totientMaximum(limit) {
|
||||
function getSievePrimes(max) {
|
||||
const primesMap = new Array(max).fill(true);
|
||||
primesMap[0] = false;
|
||||
primesMap[1] = false;
|
||||
const primes = [];
|
||||
for (let i = 2; i < max; i = i + 2) {
|
||||
if (primesMap[i]) {
|
||||
primes.push(i);
|
||||
for (let j = i * i; j < max; j = j + i) {
|
||||
primesMap[j] = false;
|
||||
}
|
||||
}
|
||||
if (i === 2) {
|
||||
i = 1;
|
||||
}
|
||||
}
|
||||
return primes;
|
||||
}
|
||||
|
||||
const MAX_PRIME = 50;
|
||||
const primes = getSievePrimes(MAX_PRIME);
|
||||
let result = 1;
|
||||
|
||||
for (let i = 0; result * primes[i] < limit; i++) {
|
||||
result *= primes[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
```
|
||||
|
Reference in New Issue
Block a user