fix(curriculum): rework Project Euler 66 (#41963)

Co-authored-by: Nicholas Carrigan (he/him) <nhcarrigan@gmail.com>
This commit is contained in:
gikf
2021-05-05 09:54:49 +02:00
committed by GitHub
parent 7a04b8977f
commit 582b9a3298

View File

@ -28,20 +28,44 @@ By finding minimal solutions in x for D = {2, 3, 5, 6, 7}, we obtain the followi
Hence, by considering minimal solutions in `x` for D ≤ 7, the largest `x` is obtained when D=5.
Find the value of D ≤ 1000 in minimal solutions of `x` for which the largest value of `x` is obtained.
Find the value of D ≤ `n` in minimal solutions of `x` for which the largest value of `x` is obtained.
# --hints--
`diophantineEquation()` should return a number.
`diophantineEquation(7)` should return a number.
```js
assert(typeof diophantineEquation() === 'number');
assert(typeof diophantineEquation(7) === 'number');
```
`diophantineEquation()` should return 661.
`diophantineEquation(7)` should return `5`.
```
assert.strictEqual(diophantineEquation(7), 5);
```
`diophantineEquation(100)` should return `61`.
```
assert.strictEqual(diophantineEquation(100), 61);
```
`diophantineEquation(409)` should return `409`.
```
assert.strictEqual(diophantineEquation(409), 409);
```
`diophantineEquation(500)` should return `421`.
```
assert.strictEqual(diophantineEquation(500), 421);
```
`diophantineEquation(1000)` should return `661`.
```js
assert.strictEqual(diophantineEquation(), 661);
assert.strictEqual(diophantineEquation(1000), 661);
```
# --seed--
@ -49,16 +73,57 @@ assert.strictEqual(diophantineEquation(), 661);
## --seed-contents--
```js
function diophantineEquation() {
function diophantineEquation(n) {
return true;
}
diophantineEquation();
diophantineEquation(7);
```
# --solutions--
```js
// solution required
function diophantineEquation(n) {
// Based on https://www.mathblog.dk/project-euler-66-diophantine-equation/
function isSolution(D, numerator, denominator) {
return numerator * numerator - BigInt(D) * denominator * denominator === 1n;
}
let result = 0;
let biggestX = 0;
for (let D = 2; D <= n; D++) {
let boundary = Math.floor(Math.sqrt(D));
if (boundary ** 2 === D) {
continue;
}
let m = 0n;
let d = 1n;
let a = BigInt(boundary);
let [numerator, prevNumerator] = [a, 1n];
let [denominator, prevDenominator] = [1n, 0n];
while (!isSolution(D, numerator, denominator)) {
m = d * a - m;
d = (BigInt(D) - m * m) / d;
a = (BigInt(boundary) + m) / d;
[numerator, prevNumerator] = [a * numerator + prevNumerator, numerator];
[denominator, prevDenominator] = [
a * denominator + prevDenominator,
denominator
];
}
if (numerator > biggestX) {
biggestX = numerator;
result = D;
}
}
return result;
}
```