Aggregation functions (#33919)

* Aggregation functions

Addedfew aggregation functions

* fix: changed statistics entries to a list
This commit is contained in:
Ganesh Pavan K
2018-12-18 04:24:20 +00:00
committed by Christopher McCormack
parent 2a4654bafa
commit 617502cc67

View File

@ -130,11 +130,13 @@ person_info = df[["name","age","address"]].copy()
### Basic Statistics
Descriptive statistics can be performed on each column of a pandas dataframe.
Get the mean of the values for the requested axis
```python
mean = df.mean()
```
- `df.mean()` - Returns the mean of all columns
- `df.corr()` - Returns the correlation between columns in a data frame
- `df.count()` - Returns the number of non-null values in each data frame column
- `df.max()` - Returns the highest value in each column
- `df.min()` - Returns the lowest value in each column
- `df.median()` - Returns the median of each column
- `df.std()` - Returns the standard deviation of each column
### Visualizing the Data in the Dataframe
To visualize the data in the dataframe, we can use matplotlib library. Here's how to use it:
@ -147,10 +149,8 @@ matplotlib.style.use('ggplot')
df['ColumnName'].plot.hist()
```
## Concatenation
Concatenation basically glues together DataFrames. Keep in mind that dimensions should match along the axis you are concatenating on. You can use **pd.concat** and pass in a list of DataFrames to concatenate together:
```python
pd.concat([df1,df2,df3])
```
@ -179,6 +179,7 @@ right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
```python
left.join(right)
```
# Pandas Functions
## Information on Unique Values
```python