improved translation (#27825)

improved some key terms, changed sentences structure
This commit is contained in:
Mariya
2019-02-18 12:39:57 +01:00
committed by Gregory Gubarev
parent 4fd6515e1e
commit 9f5e016e64

View File

@ -1,29 +1,29 @@
---
title: Dataset Splitting
localeTitle: Разделение набора данных
localeTitle: Разбивка массива данных
---
## Разделение набора данных
## Разбивка массива данных
Разделение на тренировки, кросс-валидация и набор тестов являются общими передовыми методами. Это позволяет вам настраивать различные параметры алгоритма без принятия суждений, которые в точности соответствуют данным обучения.
Разделение массива данных на сет для тренировки, тестирования и кросс-валидации относится к общепринятым практикам. Это позволяет настраивать различные параметры модели без принятия суждений, независимо.
### мотивация
Dataset Splitting возникает как необходимость устранения смещения для обучения данных в алгоритмах ML. Изменение параметров алгоритма ML для наилучшего соответствия учебным данным обычно приводит к алгоритму переобучения, который плохо работает с фактическими данными теста. По этой причине мы разделили набор данных на несколько дискретных подмножеств, на которых мы обучаем разные параметры.
Разбивка массива данных возникает как необходимость устранения смещения для обучения данных в моделях машинного обучения. Изменение параметров модели для наилучшего соответствия учебным данным обычно приводит к переобучению модели, что пагубно влияет на ее точность. По этой причине мы разделили массив данных на несколько дискретных подмножеств, на которых мы обучаем разные параметры.
#### Учебный комплект
#### Тренировочный сет
Набор Training используется для вычисления фактической модели, которую ваш алгоритм будет использовать при работе с новыми данными. Этот набор данных обычно составляет 60% -80% от всех доступных вами данных (в зависимости от того, используете ли вы набор кросс-валидации).
Тренировочный сет используется для вычисления параметров, которые ваш алгоритм будет использовать при работе с новыми данными. Этот набор данных обычно составляет 60% -80% от всех доступных вами данных (в зависимости от того, используете ли вы набор кросс-валидации).
#### Набор для проверки креста
#### Сет для кросс-валидации
Множества Cross Validation предназначены для выбора модели (обычно ~ 20% ваших данных). Используйте этот набор данных, чтобы попробовать различные параметры для алгоритма, прошедшего обучение в наборе обучения. Например, вы можете оценить различные параметры модели (полиномиальная степень или лямбда, параметр регуляризации) в наборе кросс-проверки, чтобы увидеть, что может быть наиболее точным.
Сет для кросс-валидации предназначен для выбора модели (обычно ~ 20% массива данных). Используйте этот набор данных, чтобы попробовать различные параметры для алгоритма, прошедшего обучение в наборе обучения. Например, вы можете оценить различные параметры модели (полиномиальная степень или лямбда, параметр регуляризации) в наборе кросс-валидации, чтобы увидеть, что может быть наиболее точным.
#### Набор тестов
#### Сет для тестирования
Набор тестов - это последний набор данных, который вы касаетесь (обычно ~ 20% от ваших данных). Это источник истины. Ваша точность в предсказании набора тестов - это точность вашего алгоритма ML.
Сет для тестирования - последний массив данных, который оценивает качество работы модели (обычно ~ 20% от ваших данных). Это источник истины. Ваша точность в предсказании набора тестов - это точность вашего алгоритма машинного обучения.
#### Дополнительная информация:
* [AWS ML Doc](http://docs.aws.amazon.com/machine-learning/latest/dg/splitting-the-data-into-training-and-evaluation-data.html)
* [Хорошее сообщение stackoverflow](https://stackoverflow.com/questions/13610074/is-there-a-rule-of-thumb-for-how-to-divide-a-dataset-into-training-and-validatio)
* [Учебный документ](https://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_105_i1_Reitermanova.pdf)
* [Учебный документ](https://www.mff.cuni.cz/veda/konference/wds/proc/pdf10/WDS10_105_i1_Reitermanova.pdf)