fix(curriculum): rework Project Euler 71 (#42006)

This commit is contained in:
gikf
2021-05-11 13:33:29 +02:00
committed by GitHub
parent 916ca023bf
commit a6acbe20cc

View File

@ -8,28 +8,52 @@ dashedName: problem-71-ordered-fractions
# --description-- # --description--
Consider the fraction, `n`/`d`, where `n` and `d` are positive integers. If `n`<`d` and HCF(`n`,`d`)=1, it is called a reduced proper fraction. Consider the fraction, $\frac{n}{d}$, where `n` and `d` are positive integers. If `n` < `d` and highest common factor, ${{HCF}(n, d)} = 1$, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for `d` ≤ 8 in ascending order of size, we get: If we list the set of reduced proper fractions for `d` ≤ 8 in ascending order of size, we get:
<div style='text-align: center;'>1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, <strong>2/5</strong>, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8</div> $$\frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{3}{8}, \frac{\textbf2}{\textbf5}, \frac{3}{7}, \frac{1}{2}, \frac{4}{7}, \frac{3}{5}, \frac{5}{8}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}$$
It can be seen that 2/5 is the fraction immediately to the left of 3/7. It can be seen that $\frac{2}{5}$ is the fraction immediately to the left of $\frac{3}{7}$.
By listing the set of reduced proper fractions for `d`1,000,000 in ascending order of size, find the numerator of the fraction immediately to the left of 3/7. By listing the set of reduced proper fractions for `d``limit` in ascending order of size, find the numerator of the fraction immediately to the left of $\frac{3}{7}$.
# --hints-- # --hints--
`orderedFractions()` should return a number. `orderedFractions(8)` should return a number.
```js ```js
assert(typeof orderedFractions() === 'number'); assert(typeof orderedFractions(8) === 'number');
``` ```
`orderedFractions()` should return 428570. `orderedFractions(8)` should return `2`.
```js ```js
assert.strictEqual(orderedFractions(), 428570); assert.strictEqual(orderedFractions(8), 2);
```
`orderedFractions(10)` should return `2`.
```js
assert.strictEqual(orderedFractions(10), 2);
```
`orderedFractions(9994)` should return `4283`.
```js
assert.strictEqual(orderedFractions(9994), 4283);
```
`orderedFractions(500000)` should return `214283`.
```js
assert.strictEqual(orderedFractions(500000), 214283);
```
`orderedFractions(1000000)` should return `428570`.
```js
assert.strictEqual(orderedFractions(1000000), 428570);
``` ```
# --seed-- # --seed--
@ -37,16 +61,35 @@ assert.strictEqual(orderedFractions(), 428570);
## --seed-contents-- ## --seed-contents--
```js ```js
function orderedFractions() { function orderedFractions(limit) {
return true; return true;
} }
orderedFractions(); orderedFractions(8);
``` ```
# --solutions-- # --solutions--
```js ```js
// solution required function orderedFractions(limit) {
const fractions = [];
const fractionValues = {};
const highBoundary = 3 / 7;
let lowBoundary = 2 / 7;
for (let denominator = limit; denominator > 2; denominator--) {
let numerator = Math.floor((3 * denominator - 1) / 7);
let value = numerator / denominator;
if (value > highBoundary || value < lowBoundary) {
continue;
}
fractionValues[value] = [numerator, denominator];
fractions.push(value);
lowBoundary = value;
}
fractions.sort();
return fractionValues[fractions[fractions.length - 1]][0];
}
``` ```