fix(curriculum): rework Project Euler 74 (#42057)

* fix: rework challenge to use argument in function

* fix: add solution

* fix: use MathJax for consistent look
This commit is contained in:
gikf
2021-05-14 08:18:22 +02:00
committed by GitHub
parent 44e1bbd95a
commit e9f8f425b3

View File

@ -10,39 +10,58 @@ dashedName: problem-74-digit-factorial-chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:
<div style='margin-left: 4em;'>1! + 4! + 5! = 1 + 24 + 120 = 145</div>
$$1! + 4! + 5! = 1 + 24 + 120 = 145$$
Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:
<div style='margin-left: 4em;'>
169 → 363601 → 1454 → 169<br>
871 → 45361 → 871<br>
872 → 45362 → 872<br>
</div>
$$\begin{align}
&169 → 363601 → 1454 → 169\\\\
&871 → 45361 → 871\\\\
&872 → 45362 → 872\\\\
\end{align}$$
It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,
<div style='margin-left: 4em;'>
69 → 363600 → 1454 → 169 → 363601 (→ 1454)<br>
78 → 45360 → 871 → 45361 (→ 871)<br>
540 → 145 (→ 145)<br>
</div>
$$\begin{align}
&69 → 363600 → 1454 → 169 → 363601\\ (→ 1454)\\\\
&78 → 45360 → 871 → 45361\\ (→ 871)\\\\
&540 → 145\\ (→ 145)\\\\
\end{align}$$
Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.
How many chains, with a starting number below one million, contain exactly sixty non-repeating terms?
How many chains, with a starting number below `n`, contain exactly sixty non-repeating terms?
# --hints--
`digitFactorialChains()` should return a number.
`digitFactorialChains(2000)` should return a number.
```js
assert(typeof digitFactorialChains() === 'number');
assert(typeof digitFactorialChains(2000) === 'number');
```
`digitFactorialChains()` should return 402.
`digitFactorialChains(2000)` should return `6`.
```js
assert.strictEqual(digitFactorialChains(), 402);
assert.strictEqual(digitFactorialChains(2000), 6);
```
`digitFactorialChains(100000)` should return `42`.
```js
assert.strictEqual(digitFactorialChains(100000), 42);
```
`digitFactorialChains(500000)` should return `282`.
```js
assert.strictEqual(digitFactorialChains(500000), 282);
```
`digitFactorialChains(1000000)` should return `402`.
```js
assert.strictEqual(digitFactorialChains(1000000), 402);
```
# --seed--
@ -50,16 +69,63 @@ assert.strictEqual(digitFactorialChains(), 402);
## --seed-contents--
```js
function digitFactorialChains() {
function digitFactorialChains(n) {
return true;
}
digitFactorialChains();
digitFactorialChains(2000);
```
# --solutions--
```js
// solution required
function digitFactorialChains(n) {
function sumDigitsFactorials(number) {
let sum = 0;
while (number > 0) {
sum += factorials[number % 10];
number = Math.floor(number / 10);
}
return sum;
}
const factorials = [1];
for (let i = 1; i < 10; i++) {
factorials.push(factorials[factorials.length - 1] * i);
}
const sequences = {
169: 3,
871: 2,
872: 2,
1454: 3,
45362: 2,
45461: 2,
3693601: 3
};
let result = 0;
for (let i = 2; i < n; i++) {
let curNum = i;
let chainLength = 0;
const curSequence = [];
while (curSequence.indexOf(curNum) === -1) {
curSequence.push(curNum);
curNum = sumDigitsFactorials(curNum);
chainLength++;
if (sequences.hasOwnProperty(curNum) > 0) {
chainLength += sequences[curNum];
break;
}
}
if (chainLength === 60) {
result++;
}
for (let j = 1; j < curSequence.length; j++) {
sequences[curSequence[j]] = chainLength - j;
}
}
return result;
}
```