fix(curriculum): rework Project Euler 74 (#42057)
* fix: rework challenge to use argument in function * fix: add solution * fix: use MathJax for consistent look
This commit is contained in:
@ -10,39 +10,58 @@ dashedName: problem-74-digit-factorial-chains
|
|||||||
|
|
||||||
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:
|
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:
|
||||||
|
|
||||||
<div style='margin-left: 4em;'>1! + 4! + 5! = 1 + 24 + 120 = 145</div>
|
$$1! + 4! + 5! = 1 + 24 + 120 = 145$$
|
||||||
|
|
||||||
Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:
|
Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:
|
||||||
|
|
||||||
<div style='margin-left: 4em;'>
|
$$\begin{align}
|
||||||
169 → 363601 → 1454 → 169<br>
|
&169 → 363601 → 1454 → 169\\\\
|
||||||
871 → 45361 → 871<br>
|
&871 → 45361 → 871\\\\
|
||||||
872 → 45362 → 872<br>
|
&872 → 45362 → 872\\\\
|
||||||
</div>
|
\end{align}$$
|
||||||
|
|
||||||
It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,
|
It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,
|
||||||
|
|
||||||
<div style='margin-left: 4em;'>
|
$$\begin{align}
|
||||||
69 → 363600 → 1454 → 169 → 363601 (→ 1454)<br>
|
&69 → 363600 → 1454 → 169 → 363601\\ (→ 1454)\\\\
|
||||||
78 → 45360 → 871 → 45361 (→ 871)<br>
|
&78 → 45360 → 871 → 45361\\ (→ 871)\\\\
|
||||||
540 → 145 (→ 145)<br>
|
&540 → 145\\ (→ 145)\\\\
|
||||||
</div>
|
\end{align}$$
|
||||||
|
|
||||||
Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.
|
Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.
|
||||||
|
|
||||||
How many chains, with a starting number below one million, contain exactly sixty non-repeating terms?
|
How many chains, with a starting number below `n`, contain exactly sixty non-repeating terms?
|
||||||
|
|
||||||
# --hints--
|
# --hints--
|
||||||
|
|
||||||
`digitFactorialChains()` should return a number.
|
`digitFactorialChains(2000)` should return a number.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert(typeof digitFactorialChains() === 'number');
|
assert(typeof digitFactorialChains(2000) === 'number');
|
||||||
```
|
```
|
||||||
|
|
||||||
`digitFactorialChains()` should return 402.
|
`digitFactorialChains(2000)` should return `6`.
|
||||||
|
|
||||||
```js
|
```js
|
||||||
assert.strictEqual(digitFactorialChains(), 402);
|
assert.strictEqual(digitFactorialChains(2000), 6);
|
||||||
|
```
|
||||||
|
|
||||||
|
`digitFactorialChains(100000)` should return `42`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(digitFactorialChains(100000), 42);
|
||||||
|
```
|
||||||
|
|
||||||
|
`digitFactorialChains(500000)` should return `282`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(digitFactorialChains(500000), 282);
|
||||||
|
```
|
||||||
|
|
||||||
|
`digitFactorialChains(1000000)` should return `402`.
|
||||||
|
|
||||||
|
```js
|
||||||
|
assert.strictEqual(digitFactorialChains(1000000), 402);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --seed--
|
# --seed--
|
||||||
@ -50,16 +69,63 @@ assert.strictEqual(digitFactorialChains(), 402);
|
|||||||
## --seed-contents--
|
## --seed-contents--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
function digitFactorialChains() {
|
function digitFactorialChains(n) {
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
digitFactorialChains();
|
digitFactorialChains(2000);
|
||||||
```
|
```
|
||||||
|
|
||||||
# --solutions--
|
# --solutions--
|
||||||
|
|
||||||
```js
|
```js
|
||||||
// solution required
|
function digitFactorialChains(n) {
|
||||||
|
function sumDigitsFactorials(number) {
|
||||||
|
let sum = 0;
|
||||||
|
while (number > 0) {
|
||||||
|
sum += factorials[number % 10];
|
||||||
|
number = Math.floor(number / 10);
|
||||||
|
}
|
||||||
|
return sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
const factorials = [1];
|
||||||
|
for (let i = 1; i < 10; i++) {
|
||||||
|
factorials.push(factorials[factorials.length - 1] * i);
|
||||||
|
}
|
||||||
|
|
||||||
|
const sequences = {
|
||||||
|
169: 3,
|
||||||
|
871: 2,
|
||||||
|
872: 2,
|
||||||
|
1454: 3,
|
||||||
|
45362: 2,
|
||||||
|
45461: 2,
|
||||||
|
3693601: 3
|
||||||
|
};
|
||||||
|
let result = 0;
|
||||||
|
|
||||||
|
for (let i = 2; i < n; i++) {
|
||||||
|
let curNum = i;
|
||||||
|
let chainLength = 0;
|
||||||
|
const curSequence = [];
|
||||||
|
while (curSequence.indexOf(curNum) === -1) {
|
||||||
|
curSequence.push(curNum);
|
||||||
|
curNum = sumDigitsFactorials(curNum);
|
||||||
|
chainLength++;
|
||||||
|
if (sequences.hasOwnProperty(curNum) > 0) {
|
||||||
|
chainLength += sequences[curNum];
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (chainLength === 60) {
|
||||||
|
result++;
|
||||||
|
}
|
||||||
|
for (let j = 1; j < curSequence.length; j++) {
|
||||||
|
sequences[curSequence[j]] = chainLength - j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
Reference in New Issue
Block a user