fix(curriculum): rework Project Euler 74 (#42057)
* fix: rework challenge to use argument in function * fix: add solution * fix: use MathJax for consistent look
This commit is contained in:
		@@ -10,39 +10,58 @@ dashedName: problem-74-digit-factorial-chains
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:
 | 
					The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<div style='margin-left: 4em;'>1! + 4! + 5! = 1 + 24 + 120 = 145</div>
 | 
					$$1! + 4! + 5! = 1 + 24 + 120 = 145$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:
 | 
					Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<div style='margin-left: 4em;'>
 | 
					$$\begin{align}
 | 
				
			||||||
  169 → 363601 → 1454 → 169<br>
 | 
					&169 → 363601 → 1454 → 169\\\\
 | 
				
			||||||
  871 → 45361 → 871<br>
 | 
					&871 → 45361 → 871\\\\
 | 
				
			||||||
  872 → 45362 → 872<br>
 | 
					&872 → 45362 → 872\\\\
 | 
				
			||||||
</div>
 | 
					\end{align}$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,
 | 
					It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,
 | 
				
			||||||
 | 
					
 | 
				
			||||||
<div style='margin-left: 4em;'>
 | 
					$$\begin{align}
 | 
				
			||||||
  69 → 363600 → 1454 → 169 → 363601 (→ 1454)<br>
 | 
					&69 → 363600 → 1454 → 169 → 363601\\ (→ 1454)\\\\
 | 
				
			||||||
  78 → 45360 → 871 → 45361 (→ 871)<br>
 | 
					&78 → 45360 → 871 → 45361\\ (→ 871)\\\\
 | 
				
			||||||
  540 → 145 (→ 145)<br>
 | 
					&540 → 145\\ (→ 145)\\\\
 | 
				
			||||||
</div>
 | 
					\end{align}$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.
 | 
					Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
How many chains, with a starting number below one million, contain exactly sixty non-repeating terms?
 | 
					How many chains, with a starting number below `n`, contain exactly sixty non-repeating terms?
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --hints--
 | 
					# --hints--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
`digitFactorialChains()` should return a number.
 | 
					`digitFactorialChains(2000)` should return a number.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
assert(typeof digitFactorialChains() === 'number');
 | 
					assert(typeof digitFactorialChains(2000) === 'number');
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
`digitFactorialChains()` should return 402.
 | 
					`digitFactorialChains(2000)` should return `6`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
assert.strictEqual(digitFactorialChains(), 402);
 | 
					assert.strictEqual(digitFactorialChains(2000), 6);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`digitFactorialChains(100000)` should return `42`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(digitFactorialChains(100000), 42);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`digitFactorialChains(500000)` should return `282`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(digitFactorialChains(500000), 282);
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					`digitFactorialChains(1000000)` should return `402`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```js
 | 
				
			||||||
 | 
					assert.strictEqual(digitFactorialChains(1000000), 402);
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --seed--
 | 
					# --seed--
 | 
				
			||||||
@@ -50,16 +69,63 @@ assert.strictEqual(digitFactorialChains(), 402);
 | 
				
			|||||||
## --seed-contents--
 | 
					## --seed-contents--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
function digitFactorialChains() {
 | 
					function digitFactorialChains(n) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  return true;
 | 
					  return true;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
digitFactorialChains();
 | 
					digitFactorialChains(2000);
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# --solutions--
 | 
					# --solutions--
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```js
 | 
					```js
 | 
				
			||||||
// solution required
 | 
					function digitFactorialChains(n) {
 | 
				
			||||||
 | 
					  function sumDigitsFactorials(number) {
 | 
				
			||||||
 | 
					    let sum = 0;
 | 
				
			||||||
 | 
					    while (number > 0) {
 | 
				
			||||||
 | 
					      sum += factorials[number % 10];
 | 
				
			||||||
 | 
					      number = Math.floor(number / 10);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    return sum;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  const factorials = [1];
 | 
				
			||||||
 | 
					  for (let i = 1; i < 10; i++) {
 | 
				
			||||||
 | 
					    factorials.push(factorials[factorials.length - 1] * i);
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  const sequences = {
 | 
				
			||||||
 | 
					    169: 3,
 | 
				
			||||||
 | 
					    871: 2,
 | 
				
			||||||
 | 
					    872: 2,
 | 
				
			||||||
 | 
					    1454: 3,
 | 
				
			||||||
 | 
					    45362: 2,
 | 
				
			||||||
 | 
					    45461: 2,
 | 
				
			||||||
 | 
					    3693601: 3
 | 
				
			||||||
 | 
					  };
 | 
				
			||||||
 | 
					  let result = 0;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for (let i = 2; i < n; i++) {
 | 
				
			||||||
 | 
					    let curNum = i;
 | 
				
			||||||
 | 
					    let chainLength = 0;
 | 
				
			||||||
 | 
					    const curSequence = [];
 | 
				
			||||||
 | 
					    while (curSequence.indexOf(curNum) === -1) {
 | 
				
			||||||
 | 
					      curSequence.push(curNum);
 | 
				
			||||||
 | 
					      curNum = sumDigitsFactorials(curNum);
 | 
				
			||||||
 | 
					      chainLength++;
 | 
				
			||||||
 | 
					      if (sequences.hasOwnProperty(curNum) > 0) {
 | 
				
			||||||
 | 
					        chainLength += sequences[curNum];
 | 
				
			||||||
 | 
					        break;
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    if (chainLength === 60) {
 | 
				
			||||||
 | 
					      result++;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    for (let j = 1; j < curSequence.length; j++) {
 | 
				
			||||||
 | 
					      sequences[curSequence[j]] = chainLength - j;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return result;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user