fix(curriculum): clean-up Project Euler 261-280 (#42905)
* fix: clean-up Project Euler 261-280 * fix: typo * fix: typo * fix: typo
This commit is contained in:
@ -8,16 +8,24 @@ dashedName: problem-273-sum-of-squares
|
||||
|
||||
# --description--
|
||||
|
||||
Consider equations of the form: a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer.
|
||||
Consider equations of the form: $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer.
|
||||
|
||||
For N=65 there are two solutions: a=1, b=8 and a=4, b=7. We call S(N) the sum of the values of a of all solutions of a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer. Thus S(65) = 1 + 4 = 5. Find ∑S(N), for all squarefree N only divisible by primes of the form 4k+1 with 4k+1 < 150.
|
||||
For $N = 65$ there are two solutions:
|
||||
|
||||
$a = 1, b = 8$ and $a = 4, b = 7$.
|
||||
|
||||
We call $S(N)$ the sum of the values of $a$ of all solutions of $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer.
|
||||
|
||||
Thus $S(65) = 1 + 4 = 5$.
|
||||
|
||||
Find $\sum S(N)$, for all squarefree $N$ only divisible by primes of the form $4k + 1$ with $4k + 1 < 150$.
|
||||
|
||||
# --hints--
|
||||
|
||||
`euler273()` should return 2032447591196869000.
|
||||
`sumOfSquares()` should return `2032447591196869000`.
|
||||
|
||||
```js
|
||||
assert.strictEqual(euler273(), 2032447591196869000);
|
||||
assert.strictEqual(sumOfSquares(), 2032447591196869000);
|
||||
```
|
||||
|
||||
# --seed--
|
||||
@ -25,12 +33,12 @@ assert.strictEqual(euler273(), 2032447591196869000);
|
||||
## --seed-contents--
|
||||
|
||||
```js
|
||||
function euler273() {
|
||||
function sumOfSquares() {
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
euler273();
|
||||
sumOfSquares();
|
||||
```
|
||||
|
||||
# --solutions--
|
||||
|
Reference in New Issue
Block a user