fix(curriculum): clean-up Project Euler 261-280 (#42905)

* fix: clean-up Project Euler 261-280

* fix: typo

* fix: typo

* fix: typo
This commit is contained in:
gikf
2021-07-24 09:09:54 +02:00
committed by GitHub
parent f4dc81bce3
commit f93acf28a6
20 changed files with 219 additions and 162 deletions

View File

@ -8,16 +8,24 @@ dashedName: problem-273-sum-of-squares
# --description--
Consider equations of the form: a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer.
Consider equations of the form: $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer.
For N=65 there are two solutions: a=1, b=8 and a=4, b=7. We call S(N) the sum of the values of a of all solutions of a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer. Thus S(65) = 1 + 4 = 5. Find ∑S(N), for all squarefree N only divisible by primes of the form 4k+1 with 4k+1 < 150.
For $N = 65$ there are two solutions:
$a = 1, b = 8$ and $a = 4, b = 7$.
We call $S(N)$ the sum of the values of $a$ of all solutions of $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer.
Thus $S(65) = 1 + 4 = 5$.
Find $\sum S(N)$, for all squarefree $N$ only divisible by primes of the form $4k + 1$ with $4k + 1 < 150$.
# --hints--
`euler273()` should return 2032447591196869000.
`sumOfSquares()` should return `2032447591196869000`.
```js
assert.strictEqual(euler273(), 2032447591196869000);
assert.strictEqual(sumOfSquares(), 2032447591196869000);
```
# --seed--
@ -25,12 +33,12 @@ assert.strictEqual(euler273(), 2032447591196869000);
## --seed-contents--
```js
function euler273() {
function sumOfSquares() {
return true;
}
euler273();
sumOfSquares();
```
# --solutions--