Files
freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-330-eulers-number.md
2022-04-01 02:01:59 +09:00

55 lines
1.3 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4b71000cf542c50ffc9
title: '问题 330欧拉数'
challengeType: 5
forumTopicId: 301988
dashedName: problem-330-eulers-number
---
# --description--
对于所有的整数 $n$,一个无限实数序列 $a(n)$ 定义如下:
$$ a(n) = \begin{cases} 1 & n < 0 \\\\
\displaystyle \sum_{i = 1}^{\infty} \frac{a(n - 1)}{i!} & n \ge 0 \end{cases} $$
例如
$$\begin{align} & a(0) = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = e 1 \\\\
& a(1) = \frac{e 1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots = 2e 3 \\\\ & a(2) = \frac{2e 3}{1!} + \frac{e 1}{2!} + \frac{1}{3!} + \ldots = \frac{7}{2} e 6 \end{align}$$
其中$e = 2.7182818\ldots$ 是欧拉常数
可以看出$a(n)$ 可以写成 $\displaystyle\frac{A(n)e + B(n)}{n!}$ 这样的形式其中 $A(n)$ $B(n)$ 均是整数
例如$\displaystyle a(10) = \frac{328161643e 652694486}{10!}$。
求解 $A({10}^9)$ + $B({10}^9)$ 并给出答案 $\bmod 77\\,777\\,777$。
# --hints--
`eulersNumber()` 应该返回 `15955822`
```js
assert.strictEqual(eulersNumber(), 15955822);
```
# --seed--
## --seed-contents--
```js
function eulersNumber() {
return true;
}
eulersNumber();
```
# --solutions--
```js
// solution required
```