3.5 KiB
3.5 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
5900f37e1000cf542c50fe91 | 問題 18: 経路の最大和 (1) | 5 | 301815 | problem-18-maximum-path-sum-i |
--description--
下の三角形の頂点から開始し、下の段にある隣接する数字へと移動していくと、頂点から一番下までの最大和は 23 になります。
37 4
2 4 6
8 5 9 3
すなわち、3 + 7 + 4 + 9 = 23 です。
下の三角形の頂点から一番下までの最大和を求めなさい。
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
注: 経路は 16384 通りしかないため、すべての経路を試せばこの問題を解くことができます。 しかし、問題 67 では 100 段の三角形で同じチャレンジをします。総当たりでは解けないので、賢い方法が必要です! ;o)
--hints--
maximumPathSumI(testTriangle)
は数値を返す必要があります。
assert(typeof maximumPathSumI(testTriangle) === 'number');
maximumPathSumI(testTriangle)
は 23 を返す必要があります。
assert.strictEqual(maximumPathSumI(testTriangle), 23);
maximumPathSumI(numTriangle)
は 1074 を返す必要があります。
assert.strictEqual(maximumPathSumI(numTriangle), 1074);
--seed--
--before-user-code--
const numTriangle = [[75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [95, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [17, 47, 82, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [18, 35, 87, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [20, 4, 82, 47, 65, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [19, 1, 23, 75, 3, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0], [88, 2, 77, 73, 7, 63, 67, 0, 0, 0, 0, 0, 0, 0, 0], [99, 65, 4, 28, 6, 16, 70, 92, 0, 0, 0, 0, 0, 0, 0], [41, 41, 26, 56, 83, 40, 80, 70, 33, 0, 0, 0, 0, 0, 0], [41, 48, 72, 33, 47, 32, 37, 16, 94, 29, 0, 0, 0, 0, 0], [53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14, 0, 0, 0, 0], [70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57, 0, 0, 0], [91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48, 0, 0], [63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31, 0], [4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23]];
--seed-contents--
function maximumPathSumI(triangle) {
return true;
}
const testTriangle = [[3, 0, 0, 0],
[7, 4, 0, 0],
[2, 4, 6, 0],
[8, 5, 9, 3]];
maximumPathSumI(testTriangle);
--solutions--
const testTriangle = [[3, 0, 0, 0],
[7, 4, 0, 0],
[2, 4, 6, 0],
[8, 5, 9, 3]];
function maximumPathSumI(triangle) {
let maxSum = triangle.slice();
for (let i = triangle.length - 1; i > 0; i--) {
let currentRow = maxSum[i];
let previousRow = maxSum[i - 1];
const temp = [];
for (let j = 0; j < i; j++) {
temp.push(Math.max((currentRow[j] + previousRow[j]), (currentRow[j + 1] + previousRow[j])));
}
maxSum[i - 1] = temp;
maxSum.pop();
}
return maxSum[0][0];
}